Refining our confidence in refinable partition data structures Efficient algorithms for behavioural equivalences such as stuttering bisimulation and branching bisimulation rely on refinable partition data structures [1]. We recently developed an O(m log n) algorithm for computing branching bisimulation equivalence of labelled transition systems [2], and implemented it in the mCRL2 toolset. Since the proofs of correctness and of the time complexity of the algorithm are highly non-trivial, it is desired to formally verify these proofs. In this project, you formalise the refinable partition data structures used in the branching bisimulation algorithm. For this, you use one of the theorem provers Coq or Isablle. You also identify and prove some of the properties that the branching bisimulation algorithm requires to hold in the correctness or complexity arguments. [1] Valmari, A., Lehtinen, P.: Efficient Minimization of DFAs with Partial Transition Functions. In: Albers, S. and Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science. pp. 645-656 Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008). https://doi.org/10.4230/LIPIcs.STACS.2008.1328. [2] Jansen D.N., Groote J.F., Keiren J.J.A., Wijs A. (2020) An O(m log n) algorithm for branching bisimilarity on labelled transition systems. In: Biere A., Parker D. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2020. Lecture Notes in Computer Science, vol 12079. Springer, Cham https://doi.org/10.1007/978-3-030-45237-7_1