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Abstract

The control software of the CERN Compact Muon Solenoid experiment con-
tains over 25 000 finite state machines. These state machines are organised
hierarchically: commands are sent down the hierarchy and state changes are
sent upwards. The sheer size of the system makes it virtually impossible to
fully understand the details of its behaviour at the macro level. This is fu-
elled by unclarities that already exist at the micro level. We have solved the
latter problem by formally describing the finite state machines in the mCRL2
process algebra. The translation has been implemented using the ASF+SDF
meta-environment, and its correctness was assessed by means of simulations
and visualisations of individual finite state machines and through formal verifi-
cation of subsystems of the control software. Based on the formalised semantics
of the finite state machines, we have developed dedicated tooling for checking
properties that can be verified on finite state machines in isolation.

Keywords: Case Study; Process Algebra; SML; Bounded Model Checking;
Model Transformations

1. Introduction

The Large Hadron Collider (LHC) experiment at the European Organiza-
tion for Nuclear Research (CERN) has been built in a tunnel 27 kilometres in
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circumference and is designed to yield head-on collisions of two proton (or ion)
beams of 7 TeV each. On 30 March 2010, it achieved its first successful 7 TeV
collision, breaking its previous world record, setting a new one. The LHC will
continue to operate at half energy until the end of 2012; it will not run at full
energy, achieving 14 TeV collisions, until 2014.

The Compact Muon Solenoid (CMS) experiment is one of the four big ex-
periments of the LHC. It is a general purpose detector to study the wide range
of particles and phenomena produced in the high-energy collisions in the LHC.
The CMS experiment is made up of 7 subdetectors, with each of them designed
to stop, track or measure different particles emerging from the proton collisions.
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Figure 1: Architecture of the real-time monitoring and control system of the CMS experiment,
running at the LHC.

The control, configuration, readout and monitoring of hardware devices and
the detector status, in particular various kinds of environment variables such
as temperature, humidity, high voltage, and low voltage, are carried out by
the Detector Control System (DCS). The control software of the CMS detec-
tor is implemented with Siemens’ commercial Supervision, Control And Data
Acquisition (SCADA) package PVSS-II and CERN’s Joint Controls Project
(JCOP) framework [1]. The architecture of the control software for all four big
LHC experiments is based on the SMI++ framework [2, 3]. Under the SMI++
framework, the real world is viewed as a collection of objects behaving as finite
state machines (FSMs). These FSMs are described using the State Manager
Language (SML), which can be seen as part of the SMI++ framework. SML
is actively maintained and quite stable: new language features are only being
added at a slow rate. However, its semantics is only defined informally.

A characteristic of the used architecture is the regularity and relatively low
complexity of the individual FSMs and device drivers that together constitute
the control software; the main source of complexity is in the cooperation of
these FSMs. Cooperation is strictly hierarchical, consisting of several layers; see
Figure 1 for a schematic overview. The FSMs are organised in a tree structure
where every node has one parent and zero or more children, except for the
top node, which has no parent. Nodes communicate by sending commands to
their children and state updates to their parents, so commands are refined and
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propagated down the hierarchy and status updates are sent upwards. Hardware
devices are typically found only at the bottom-most layer. The only real time
behaviour in the system is found in these device drivers. The average depth of
the control tree is approximately 9 nodes, with a minimal depth of 3 nodes and
a maximal depth of 11 nodes. The FSM system in the CMS experiment contains
well over 25 000 nodes. The exact number fluctuates as a result of continuous
development of the control system; a recent count revealed over 27 500 nodes.
On average, each FSM contains 5 logical states (i.e., control locations), and each
logical state of an FSM can be in one of two phases; this would amount to at
least 1027 500 states for the entire configuration. While a large fraction of these
states may not be reachable, we believe that 1027 500 is still a very conservative
estimate for the number of semantically reachable states (i.e., states consisting
of the control location and the valuations for local variables), as the logical
states aggregate states that are semantically not related.

The sheer size of the system significantly contributes to its complexity. Com-
plicating factors in understanding the behaviour of the system are the diversity
in the development philosophies in subgroups responsible for controlling their
own subdetectors, and the huge amount of parameters to be monitored. In view
of this complexity, it is currently impossible to trace the root cause of problems
when unexpected behaviours manifest themselves, since problems may have an
effect on a large part of the hierarchy. A single badly designed FSM may be
sufficient to lead to a livelock, resulting in non-responsive hardware devices, po-
tentially ruining expensive and difficult experiments. Considering the scientific
importance of these experiments, this justifies the use of rigorous methods for
understanding and analysing the system.

Our contributions are twofold. First, we have formalised SML by map-
ping its language constructs onto constructs in the process algebraic language
mCRL2 [4]. Second, based on our understanding of the semantics of SML, we
have identified properties that can be verified for FSMs in isolation, and for
which we have developed dedicated verification tooling.

Using the ASF+SDF meta-environment [5], we have developed a prototype
translation implementing our mapping of SML to mCRL2. This allows us to
quickly assess the adequacy of the translation through simulation and visualisa-
tion of FSMs in isolation, and by means of formal verification of small subsys-
tems of the control software, using the mCRL2 toolset. The feedback obtained
by the verification and simulation enables us to further improve the transfor-
mation. The use of the ASF+SDF meta-environment allows us to repeat this
cycle in quick successions, and, at the same time, maintain a formal description
of the translation. Development of the ASF+SDF Meta Environment was dis-
continued in 2010, when we had already started with our first experiments with
ASF+SDF. Nevertheless, we chose to continue using ASF+SDF over similar
products such as ATL because of our familiarity with ASF+SDF. Its syntax-
driven, functional approach results in very clear translation rules. As a result,
our translation can easily be converted to another formalism if needed.

The dedicated verification tools we developed allow engineers at CERN to
quickly perform behavioural sanity checks on their design, and use the feedback
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of the tools to further improve on their designs in case of any problems. Results
using these tools are favourable. For instance, our analysis reveals that 20%
of the nodes in CMS, not counting the leaf nodes, can indeed suffer from such
issues. That amounts to over 5% of all nodes. Moreover, actual outages of the
control system have been traced back to livelocks found by our tools based on
analysis of the logs. While our prototype tooling for verifying dedicated proper-
ties was built upon the ASF+SDF translation, we have recently reimplemented
part of that translation in Python. The performance gains this brought about
has allowed the engineers at CERN to integrate our dedicated tools in their
development environment.

Related work. Popular verification techniques are theorem proving and model
checking [6, 7]. In this paper we focus on the latter approach. In model checking,
models are represented as a finite state machine, and properties about these
models are expressed using temporal logic. Model checking research has spurred
the creation of explicit state model checkers like CESAR [7], EMC [6, 8], FDR
[9], SPIN [10], and mCRL2 [4].

Explicit state model checking suffers from the infamous state space explo-
sion problem; in parallel systems, the number of states in the complete system
grows exponentially in the number of parallel components. Several techniques
have been developed to tackle this explosion, e.g., symbolic model checking
[11], symmetry reduction [12, 13] and compositional verification [14, 15]. These
techniques can indeed enable the verification of larger systems; [11] promises
verification of “1020 states and beyond”. However, from 1020 states there still
is a long way to go before we can verify the 1027,500 estimated states in our
system. We therefore think it is reasonable to assume that these techniques will
only help to a limited extent, and that to verify the control software, we need
to exploit the structural properties of the system.

The availability of state-of-the-art model checkers has enabled the verifica-
tion of industrial systems. Among others the ISO/IEEE 1073.2 standard for
remote control [16, 17], the IEEE 1394 firewire standard [18, 19, 20], contention
resolution in the ZigBee protocol [21], and the Carrier Sense Multiple Access/-
Collision Detection protocol in IEEE 802.3 [22] have been verified. However, as
far as we are aware, there is no case study in the literature that parallels ours
in terms of complexity.

The applicability of the model checker mCRL2 has been demonstrated in a
number of industrial case studies. Among others an automated parking garage
[23], a distributed system for lifting trucks [24], part of the IEEE 11073-20601
protocol for personal health devices [25], a distributed grid system supporting
production activities as well as user data analysis used at CERN [26], as well
as a printer intended to operate in the manufacturing of printed circuit boards
[27] have been verified.

Outline. We give a cursory overview of the core constructs of the SML lan-
guage and the configuration of the control system in Section 2. In Section 3,
the mCRL2 language is explained. The mCRL2 semantics of SML are then
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explained in Section 4, and we briefly elaborate on the methodology we used
for obtaining this semantics. Our dedicated verification tools for SML, together
with the results obtained so far, are described in further detail in Section 5. We
summarise our findings and suggestions in Section 6.

2. The Control System

2.1. The Control System Configuration

The CMS control system is organised as a tree-like architecture (see also
Figure 1). Nodes in this tree are the basic behavioural entities, sending com-
mands down the tree to their children and state updates up the tree to their
parents. Communication between the nodes is arranged through a proprietary
middleware layer, called DIM [28], which is based on the client/server paradigm,
offering reliable asynchronous communication between nodes.

The tree-like configuration and the finite state machine descriptions of the
CMS control system are stored in a database for easy maintenance. That is, for
each node, it is precisely known which node is its parent and which nodes are
its children, and the SML code that dictates the behaviour of the node.

2.2. The State Manager Language

The finite state machines used in the CMS experiment are described in the
State Manager Language (SML) [2, 3]. In ibid. only an informal semantics is
given, and a formal semantics of SML is unavailable. We present the syntax and
the suggested meaning of the core of the language using snapshots of a running
example; we revisit this example in our formalisation in Section 4, where also
the abbreviations that are used in the formalisation are explained in more detail.
Note that SML is larger than presented here, also offering language constructs
for the hardware device drivers, but the FSMs making up the control system
employ these core constructs only.

Listing 1 shows part of the definition of a class in SML. Conceptually, this
is the same kind of class known from object-oriented programming: the class is
defined once, but can be instantiated many times. An instantiation is referred
to as a Finite State Machine. A class consists of one or more state clauses;
Listing 1 only shows the state clause for the OFF state. Intuitively, a state
clause describes how the FSM should behave when it is in a particular state.
Every state clause consists of a list of when clauses and a list of action clauses,
either of which may be empty.

A when clause has two parts: a guard which is a Boolean expression over the
states of the children of the FSM and a referrer which describes what should
happen if the guard evaluates to true. The base form of a guard is P in state

STATE, where STATE is the name of a state (or a set of state names) and P is a
child pattern. A child pattern consists of two parts: the first part is either ANY

or ALL and the second part is the name of a class or the literal FwCHILDREN. The
intended meaning is straightforward:

$ALL$FwCHILDREN in state ON

5



class: $FWPART_$TOP$RPC_Chamber_CLASS

state: OFF

when ( ( $ANY$FwCHILDREN in_state ERROR ) or

( $ANY$FwCHILDREN in_state TRIPPED ) ) move_to ERROR

when ( $ANY$RPC_HV in_state {RAMPING_UP,

RAMPING_DOWN} ) move_to RAMPING

when ( ( $ALL$RPC_LV in_state ON ) and

( $ALL$RPC_HV in_state STANDBY ) ) move_to STANDBY

when ( ( $ALL$RPC_HV in_state ON ) and

( $ALL$RPC_LV in_state ON ) ) move_to ON

when ( ( $ALL$FwCHILDREN in_state ON ) and

( $ALL$RPC_T in_state OK ) ) move_to ON

action: STANDBY

do STANDBY $ALL$RPC_HV

do ON $ALL$RPC_LV

action: OFF

do OFF $ALL$FwCHILDREN

action: ON

do ON $ALL$FwCHILDREN

Listing 1: Part of the definition of the Chamber class in SML.

means “all children are in the ON state”, and:

$ANY$RPC HV in state {RAMPING UP, RAMPING DOWN}

evaluates to true if “some child of class RPC HV is either in state RAMPING UP or
state RAMPING DOWN”.

A referrer is either of the form move to STATE, indicating that the finite
state machine changes its state to STATE, or of the form do A, indicating that
the action with name A should be executed next. If the guards of more than
one when clause evaluate to true, the topmost enabled referrer is executed.
Whenever the FSM moves to a new state, it executes the when clauses, starting
from the top when clause, to see if it should stay in this state (all guards are
false) or if it should go to another state (some guard is true). It is therefore
possible that a single move to referrer or statement (see below) triggers a series
of state changes.

An action clause consists of a name and a list of statements. When an FSM
receives a command while in a state STATE, it looks inside the state clause of
state STATE for an action clause with the same name as the command and if such
an action clause exists, it executes its statement list. If no such action exists,
the command is ignored. For example, if the Chamber finite state machine from
Listing 1 is in state OFF and it receives an ON command, it will execute the last
action clause.
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The most commonly used statement is do C P, which means that the com-
mand C is sent to all children which match the child pattern P. After a command
is sent, the child is marked busy. When a child sends its new state back, this
busy flag is removed. The do statement is non-blocking, i.e., it does not wait for
the children to respond with their new state. The child pattern always starts
with $ALL$ in this context. SML also provides if and move to statements, as
we illustrated in Listing 2.

action: STANDBY

do STANDBY $ALL$RPC_HV

do ON $ALL$RPC_LV

if ( $ALL$RPC_LV in_state ON ) then

do ON $ALL$RPC_HV

if ( $ALL$RPC_HV in_state ON ) then

move_to ON

endif

else

do STANDBY $ALL$RPC_LV

do STANDBY $ALL$RPC_HV

do STANDBY $ALL$FwCHILDREN

endif

Listing 2: An example of a more complex action clause.

The move to STATE statement immediately stops execution of the action
clause and causes the FSM to move to STATE. The if G then S1 else S2

endif statement blocks as long as there is a child, referred to in G, that has a
busy flag. If the guard G evaluates to true, then S1 is executed and otherwise
S2 is executed. The else clause is optional.

3. An Overview of mCRL2

The mCRL2 language [4] consists of three distinct parts: a data language
for describing the data types and transformations, a process language for spec-
ifying system behaviours and a modal language for reasoning about the system
behaviours.

3.1. Data Language

The data language of the mCRL2 language is based on higher-order abstract
data types, in which functions are defined using equational specifications. The
language has built-in definitions for many of the commonly used data types (and
operations on them), such as Booleans, represented by sort Bool, (unbounded)
integer, natural and positive numbers, represented by sorts Int, Nat and Pos,
respectively. Container sorts, such as (infinite) sets, bags and lists over arbitrary
data sorts D are denoted by Set(D), Bag(D), and List(D). New data sorts
can be defined either by directly specifying the constructors of a data sort, or
using structured sorts, or through aliasing. Relations and mappings on data
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sorts, and their rules of logic are formalised through equational rewrite rules.
Defining data sorts through structured sorts introduces a few built-in mappings
and relations, such as projection functions, equality and inequality. Expressions
in the data language can be built by combining sort constructors, functions,
relations and data variables. Example expressions are 3+4 of sort Pos, and b

&& (b || false) and n == 10 of sort Bool.

Example 1. A sort representing the Cartesian product of integer numbers can
be defined by aliasing it to a structured sort struct coord(x:Int,y:Int), i.e.,
Point = struct coord(x:Int,y:Int). The mappings x and y are the projec-
tion functions: given an expression coord(0,1) of sort Point, the expression
x(coord(0,1)) is an integer number (the number 0 in this case).

Of particular interest for the formalisation of SML programs is lambda ab-
straction, which is well-known from λ-calculus and type theory. In our specifica-
tion, we use them, e.g., to model association lists. Functions, specified through
lambda abstraction or otherwise, can be updated concisely and intuitively, as
illustrated by the following example.

Example 2. Let f:Nat->Nat be a user-defined mapping of sort Nat to Nat;
the function f can be thought of as an infinite array. Using lambda abstraction,
we can define f to map each natural number to its doubled number: f=lambda
n:Nat. n+n. Note that this is equivalent to defining f(n) = n + n, but allows
inline definition of this function. Using function updates, function f can be
modified: f[0->2] agrees with function f, save for f[0->2](0), which has
value 2, whereas f(0) has value 0.

The built-in data types are designed to reflect their mathematical counterparts,
contributing to the accessibility of the data language. The support for uni-
versal and existential quantifiers further facilitates conventional mathematical
reasoning, but since we do not use them in our formalisation, we refrain from
an in-depth explanation.

3.2. Process Language

The process specification language of mCRL2 consists of only a small number
of basic operators and primitives. The language is inspired by process algebras
from the ACP family [29], and has both an axiomatic and an operational se-
mantics. We forego a formal exposition of its semantics, for which we refer
to [4, 29]; instead, we restrict ourselves to introducing its syntax, sketch its
meaning informally and illustrate its use through small examples.

Processes are constructed compositionally using alternative composition and
quantification, sequential and parallel composition, hiding, communication, and
recursion. The basic behavioural elements of a process are the deadlock process
delta and (parameterised) actions. The latter represent atomic, observable
events, such as receiving status updates or the sending of commands; the pa-
rameters can be used to represent the data that is linked to such events. If
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read is an action name, and e is some data expression of the sort of action
name read, then read(e) is a parameterised action.

Suppose p and q are processes, then their alternative composition is denoted
p+q. Intuitively, process p+q behaves as either process p or q, dependent on
which of the two processes executed the first action. Since process delta can
never execute actions, process delta+p will simply behave as process p. Al-
ternative quantification generalises alternative composition: if a data variable
d of some sort D occurs in process p, then sum d:D. p denotes the (possibly
infinite) choice between the set of processes obtained by instantiating variable
d in process p with all possible values it can attain.

Example 3. Suppose read(n+n) is an action parameterised with natural num-
ber expressions, then process sum n:Nat. read(n+n) denotes the infinite set of
processes offering read actions with even values as their parameters.

Using a binary if-then construct, denoted b -> p, or a ternary if-then-else con-
struct, denoted b -> p <> q, processes can be made data-dependent: if b eval-
uates to true, then processes b -> p and b -> p <> q behave as process p,
and the latter behaves as process q otherwise, whereas the former behaves as
process delta.

The sequential composition of processes p and q, denoted p.q behaves as
process p, and, upon successful termination of p, continues to behave as process
q. Note that the deadlock process delta never terminates successfully; hence,
process delta.p is indistinguishable from process delta.

Example 4. Let read and send be two parameterised actions, taking natural
number expressions as their arguments, and let n of sort Nat be a data vari-
able. Then process read(n).send(n) represents a system in which first a value
represented by data variable n is read, which is then sent via action send. The
process sum n:Nat. read(n).send(n) combines sequential composition with
alternative quantification, modelling that any natural number read through ac-
tion read is sent via action send.

A parallel composition of processes p and q, which is denoted by process p||q,
behaves as the interleaving of both processes involved: the first action may
come from process p, which after execution of this action behaves as process
p’; the resulting process then is p’||q. Symmetrically, the first action may
come from process q. In addition, both processes may execute their first actions
simultaneously, producing a multi-action, after which the processes that remain
are again composed in parallel.

Example 5. Consider the process p defined as sum n:Nat. read(n).send(n)

and q, defined as sum m:Nat. send(m).read(m+m). The parallel composition
of p and q, may first execute a read(n) action, after which it will behave
as the parallel composition send(n)||q, it may first execute a send(m) ac-
tion, after which it will behave as the parallel composition p||read(m+m), or
both processes may execute their first actions simultaneously, denoted by the
multi-action read(n)|send(m), after which the remaining process behaves as
send(n)||read(m+m).
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Exchanging information between processes by synchronising on specific events
is achieved using the binary comm operator. This operator takes a set of commu-
nication rules and a process as its argument; the communication rules specify
which multi-actions communicate successfully. Exchange of information and
successful communications are only achieved if the involved actions agree on all
the values of their parameters.

Example 6. Consider again processes p and q from the previous example. Sup-
pose actions read and send can communicate, yielding a new parameterised
action sync. Then process comm({read|send->sync}, p||q) will convert the
multi-action read(n)|send(m) to sync(n) whenever n==m, and leave the multi-
action intact in all other cases.

Process behaviours can be restricted to only use a specific set of atomic actions
and multi-actions, using the binary allow construct. This provides the means
to enforce that non-successful synchronisations of two parallel processes are not
considered. Effectively, the process allow(A,p), where A is a finite set of atomic
action names and multi-actions, behaves as process p, except that any action or
multi-action in p that is not in A is replaced by the deadlock process delta.

Example 7. Let p and q again be the processes from the previous example.
The process allow({sync}, comm({read|send->sync}, p||q)) will behave as
sum n:Nat. sync(n).( sum m:Nat. (n==m+m) -> sync(n) <> delta). That
is, if a non-zero value is communicated between processes p and q, then no fur-
ther communication happens (since n==m+m evaluates to true only if both n and
m are zero) and the process locks; if the value zero is exchanged, then this is
done once more, after which the process successfully terminates.

Finally, recursive equations of the form X(d1:D1,...,dn:Dn) = p, allow for
specifying infinite behaviours. Intuitively, each occurrence of a parameterised
process variable X(e1,...,en) in some process term q behaves as process p, in
which the variables di have been replaced by expressions ei.

Example 8. Consider process equation X=sum m:Nat. read(m).X and process
equation Y(n:Nat)=sum i:Nat. (i > n) -> send(i).Y(i). Process X can
execute a read action with an arbitrary natural number parameter, after which
it again behaves as process X. Process Y(0) can execute a send action with an
arbitrary non-zero natural number parameter i, after which it behaves as pro-
cess Y(i). Effectively, process Y(i) specifies a system that sends ever-increasing
numbers.

If a process variable occurs within the scope of its own equation, a shorthand
notation for updating only part of the data parameters of that equation is
available. For instance, if process variable X(d1,...,ei,...,dn) occurs in the
right-hand side process p of an equation X(d1:D1,...,dn:Dn) = p, then we can
write X(di=ei) instead.

Example 9. Consider the process equation X(n:Nat, m:Nat) = sum p:Nat.

read(p).X(n, p) in which only m is changed in the right hand side. Using
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our shorthand notation, we can also write process equation X(n:Nat, m:Nat)

= sum p:Nat. read(p).X(m=p).

3.3. Modal Language

Whereas the process language is typically used to specify how a system
achieves its behaviour, the modal language is typically used to reason about
high level requirements of such systems. The modal language of mCRL2 is
based on the theory of the modal µ-calculus [30], extended with facilities to
reason about data, see [31, 32]. The resulting language is quite expressive; for
instance, it admits a linear encoding of the temporal logic LTL, see [33].

Apart from standard Boolean connectives such as conjunction and disjunc-
tion, the mCRL2 modal language permits the use of existential and universal
quantification over data sorts (specified by the data language), and the use of
Boolean expressions. In addition the language permits the use of modalities.
The must modality [A]f expresses that any first action a(v) executed by a
process will result in a process that satisfies property f if action a(v) is among
the actions in the set of actions described by A. Dually, the may modality <A>f

asserts that among the set of first actions that can be executed by the process,
there is one action that is contained in the set of actions described by A, and
which, if executed, will result in a process satisfying property f. The modal
language permits describing infinite sets of actions, which is needed because of
the possibly infinite branching processes that can be described by the process
language.

Example 10. The set of actions characterised by true is the entire set of ac-
tions; the set of actions characterised by exists n:Nat. read(n) is the set of
read actions with a parameter taken from the set of all natural numbers. Finally,
!exists n:Nat. read(n+n) specifies the entire set of actions except those read
actions with even valued natural number parameters, i.e. the ! operator denotes
the complement of a set of actions. The example given here contains, e.g., the
actions a, send(m) and read(1), but not read(2). Thus, <true>true asserts
that a process can execute an action, and [!exists n:Nat. read(n+n)]false

asserts that a process can at most execute read actions with even valued nat-
ural numbers. Lastly, forall n:Nat. <read(n)>true asserts that a process
can execute read actions with every natural number parameter. This property
holds for a process such as sum m:Nat. read(m), but not for a process such
as sum m:Nat. read(m+m), since the latter cannot perform, e.g., a read(1)

action.

Finally, least and greatest fixpoints, denoted by mu X. f(X) and nu X. f(X),
respectively, permit reasoning about finite and infinite runs of a system. Typi-
cally, least fixpoints are used to specify eventualities, whereas greatest fixpoints
are used for invariants. By mixing least and greatest fixpoints, increasingly
complex properties, such as fairness properties, can be stated. We refer the
reader to [34] for an excellent in-depth discussion of the µ-calculus. In this pa-
per we consider worst-case behaviour of the system, hence we do not use fairness
in any of our properties.
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Example 11. The property nu X. <exists n:Nat. read(n)>X asserts that
a process is capable of executing an infinite sequence of read actions, without
requiring anything about the parameters these carry. In a similar vein, the prop-
erty forall n:Nat. [read(n)]mu X. ([!send(n)]X && <true>true) asserts
that a read action with some natural number parameter will inevitably result
in a send action with that same natural number parameter.

The modal language of mCRL2 features parameterised recursion, but since we
will not use this construct, we will not elaborate on it.

3.4. Tooling

The language mCRL2 has a homonymously named toolset, offering tools
that help to understand specifications written in the data language and the
process language, and tools that can check whether properties written in the
modal language hold of a process description or not. For an overview of most
common tools, we refer to [35]; we here confine ourselves to give a high-level
overview of the techniques that were most relevant for our purposes.

Data expressions can be evaluated using an interpreter. Typically, the in-
terpreter can help in understanding why expressions can be further simplified
or not. For instance, one may ask whether for a complex open Boolean data
expression b, there is an assignment to some of the variables in b so that the
expression evaluates to true. Note that it is very easy to state undecidable
properties in the language, so such tooling helps assess whether the technology
used for reasoning about data is sufficiently powerful to work with the expres-
sions used, e.g., in the process description of a certain system. For instance,
one may wonder whether for an unknown natural number k, the expression
exists n:Nat. k < n && n < 4 evaluates to true, false, or some other ex-
pression; in this case, the interpreter will simplify the expression to k < 3.

The behaviour described by processes can be simulated or explored exhaus-
tively by investigating the combinatorial possibilities of the actions that can be
executed, resulting in a state space such as a labelled transition system. Such
a state space can be visualised in 2D or 3D using a variety of advanced tech-
niques. Moreover, reduction techniques allow for minimising the state space
using well-known equivalence reductions such as strong bisimilarity, similarity,
trace equivalence and (divergence-sensitive) branching bisimilarity.

Verification of the behaviour described by processes is supported by com-
puting whether a given functional requirement, expressed as a modal µ-calculus
formula holds for the process or not; this is known as model checking. For spe-
cific types of requirements, counterexamples that are easy to interpret can be
reported in the case the requirement fails on the given process. This facilitates
debugging the cause of the failure.

4. A Formal Semantics for SML

We next describe the most important aspects of the translation of SML to
mCRL2. The details of the formal translation of SML into mCRL2 can be found
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in the appendix. Our choice for mCRL2 is motivated largely by the expressive
power of the language, its rich data language rooted in the theory of abstract
data types, its available tool support, and our understanding of the advantages
and disadvantages of mCRL2.

4.1. From SML to mCRL2

Every SML class is converted to an mCRL2 process definition; the behaviour
of an FSM is then described by the behaviour of a process instance. Each FSM
maintains a state and a pointer to the code it is currently executing. In addition,
an FSM is embedded in a global tree-like configuration that identifies its parent,
and its children. In order to faithfully describe the behaviour of an FSM, we
therefore equip each mCRL2 process definition for a class X with this information
as follows:

proc X_CLASS(c: Config, s: State, cs: ID -> State, busy: Children

phase: Phase, cq: CommandQueue, pc: Int)

Parameter c represents the static configuration of a process instance. This static
configuration is of sort Config, a structured sort:

Config = struct configuration(self: Id,

parent: Id,

chs: Children,

cc: Class -> Children);

Children = List(Id);

The structured sort Config can be thought of as a named tuple; self repre-
sents the unique identifier of this process instance, parent represents the unique
identifier of the parent of this process instance, i.e., its parent in the tree struc-
ture. The list of identifiers of the children of the node in the tree is contained
in chs. An association list, mapping FSM classes to all children of said class is
represented by cc.

Process parameter s is used to keep track of the state of the FSM. The state
information of self(c)’s children is stored in cs, which is a function from child
identifiers to states. Whenever the FSM receives a state-update message from
one of its children, the function cs is updated accordingly. Children that are
still processing the last command sent to them are contained in busy. A child
is added to busy after sending a message to the child, and removed when it
responds with its new state.

The phase parameter has value WhenPhase if the FSM is executing the when
clauses and ActionPhase otherwise; Phase is a simple structured sort containing
these two values. The phases will be explained in detail in the following section.

We only need parameters cq and pc in the action phase. The command
queue cq contains messages that are to be sent to an FSM’s children. Specifi-
cally, when executing a do C P statement, we add a pair with the child’s id and
the command C to cq, for every child matching the child pattern P. The com-
mand queue is subsequently emptied by sending the messages stored in cq. We
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postpone discussion of the program counter represented by pc to the following
section.

Guards in FSMs are described using a three valued logic, taking values TRUE,
FALSE, and GHOST. Guards can test whether all or any of an FSMs children of
a certain class are in a designated state. Formally, such a test is described
as $ALL$P in state STATE where P describes a set of children. This checks
whether all children of which the class type is in P are in state STATE. Likewise,
we can write $ANY$P in state STATE. The language also supports the check P

is empty, testing whether an FSM has no children with a class type matching
P. Since this feature is currently not used in any FSM in production, we refrain
from further discussion of the construct. Complex guards can be obtained by
composing guards using operators and, or and not, and by testing for sets of
states instead of a single state.

The logic used to evaluate guards has been constructed from an engineering
perspective. If an $ANY$ or $ALL$ test refers to an empty set of objects, it
returns the value GHOST; otherwise it returns a logical value that corresponds to
the statement, i.e., FALSE or TRUE. The GHOST value is implemented in such a
way that it is ignored in a broader context, corresponding to the intuition that
a condition about children that are not present must be ignored. This allows for
designing FSMs that can be reused in different parent/children configurations.

Naively extending Boolean logic with GHOST can lead to an inconsistent the-
ory in which one can derive true=false. Instead, the implementation of this
logic proceeds in several steps. First, all tests, such as $ANY$ and $ALL$, are
evaluated to FALSE, GHOST or TRUE. The resulting expression is subsequently
rewritten to an expression containing at most one GHOST value. This is done
using the following rewrite rules (here x ∈ {FALSE, GHOST, TRUE} is an arbitrary
three valued logic value):

x and GHOST → x GHOST and x → x
x or GHOST → x GHOST or x → x
not GHOST → GHOST

As a final step, GHOST is replaced by FALSE in the resulting expression, which is
then further evaluated using standard rules of Boolean logic. Expressions that
reduce to FALSE this way are interpreted as the mCRL2 Boolean value false

and expressions that reduce to TRUE are interpreted as the Boolean value true.
The logic is implemented as the mCRL2 sort ThreeValuedLogic of which

the full implementation can be found in the appendix. An example of the
translation of a guard to mCRL2 is shown in Translation 1.

4.1.1. Phases

During the when phase, a process executes when clauses until it reaches a
state in which none of the guards evaluates to true. It then moves to the action
phase. In the action phase, a process can receive a command from its parent
or a state-update message from one of its children. This process is illustrated
in Figure 2. After handling the command or message, it returns to the when
phase.
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SML mCRL2

( $ALL$FwCHILDREN

not_in_state OFF )

and

( $ANY$FwCHILDREN

in_state STANDBY )

bool(

and(

all_not_in_state(chs(c), cs, [S_OFF]),

any_in_state(chs(c), cs, [S_STANDBY])

)

)

Translation 1: Translation of a condition.

Translating the when phase turns out to be rather straightforward: for each
state a process term consisting of nested if-then-else statements is introduced,
formalised by mCRL2 expressions of the form b->p<>q (if b, then act as process
p, otherwise as q). Each if-clause represents exactly one when clause. The else-
clause of the last when clause sends a state-update message (represented by the
mCRL2 action send state) with the current state to the parent of this FSM
and moves to the action phase. An example is given in Translation 2.

SML mCRL2

state: OFF

when G1 move_to S1

...

when Gn move_to Sn

isS_OFF(s) && isWhenPhase(phase) -> (

translation_of_G1 ->

send_state(self(c),parent(c),S1).

move_state(self(c),S1).

X_CLASS(s = S1) <>

...

translation_of_Gn ->

send_state(self(c),parent(c),Sn).

move_state(self(c),Sn).

X_CLASS(s = Sn) <>

send_state(self(c),parent(c),s).

move_phase(self(c),ActionPhase).

X_CLASS(phase = ActionPhase,

cq = [], pc = 0))

Translation 2: Simplified translation of the when clauses of a state OFF.

The move state action indicates that the process changes its state. Note
that for every move state action that happens the state is sent to the parent
through a send state action. If none of the guards are true, the current state
is sent to the parent and the process changes to the action phase, signalled by
a move phase action.

Modelling the action phase is more involved as we need a separate process
to take care of sending commands to children. We focus on the translation of
the action clauses and the code which handles state-update messages.
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statements
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evaluating
when clauses

all guards are false
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received command

executed
last statement

command queue is empty

Figure 2: Overview of the when phase and the action phase.

SML allows for an arbitrary number of statements and an arbitrary number
of (nested) if-statements in every action clause. We uniquely identify the trans-
lation of every statement with an integer label. After executing a statement,
the program counter pc is set to the label of the statement which should be
executed next. There are two special cases here:

• Label 0, the clause selector. When entering the action phase, the program
counter is set to 0. Upon receiving a command, the clause selector sets
the program counter to the label of the first statement of the action clause
that should handle the command.

• Label -1, end of action. After executing an action, the program counter
is set to -1, signalling that the command queue must be emptied and the
process must change to the when phase.

An example is given in Translation 3. The receive command action models the
reception of a command that was sent by the FSM’s parent. Such a command is
ignored if no action clause handles it. In the example, observe that both after
ignoring a command and after completing the execution of the STANDBY action
handler, the program counter is set to -1. A process term not shown here then
empties the command queue by issuing a sequence of send command actions,
and subsequently returns to the when phase.

Since a do statement is asynchronous, the children can send their state-
update at any time during the action phase. This is dealt with as follows.
Suppose a state-update message is received through the receive state action.
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SML mCRL2

state: OFF

action: STANDBY

do STANDBY $ALL$Y

do ON $ALL$Z

action: OFF

do OFF $ALL$Y

action: ON

do ON $ALL$Y

isS_OFF(s) && isActPhase(phase)

&& cq == [] -> (

pc == 0 ->

sum com:Command.(

receive_command(parent(c),self(c),com).

isC_STANDBY(com) ->

X_CLASS(pc = 1) <>

isC_OFF(com) ->

X_CLASS(pc = 3) <>

isC_ON(com) ->

X_CLASS(pc = 4) <>

send_state(self(c),parent(c),s).

ignored_command(self(c),com).

X_CLASS(pc = -1) +

pc == 1 ->

X_CLASS(

cq = send_command(C_STANDBY,

(cc(c))(Y_CLASS)),

pc = 2) +

pc == 2 ->

X_CLASS(

cq = send_command(C_ON,

(cc(c))(Z_CLASS)),

pc = -1) + ...

Translation 3: Simplified translation of the action clauses of a state OFF.

If this precedes the reception of a command in this action phase, we simply
process the state-update and move to the when phase. If we are in the middle
of executing an action clause, we process the state-update, but do not move to
the when clause. The rationale is that sending commands to children is done
instantaneously, and is, to all intents and purposes, atomic.

4.1.2. Formalising the hierarchy

So far we have only discussed the translation of individual FSM classes. The
instantiation and integration of these classes, such that our translation describes
the complete hierarchy of FSMs is done at a higher level in the specification. For
each FSM, the process describing its class is instantiated with its id, the id of
the parent, the ids, states and types of its children, and the parameters for the
initialisation phase. The processes obtained in this way, are then put in parallel.
Information about actual configurations are read from the FSM database.

The send state action communicates with the receive state action to
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a comm state action, representing the communication of the new state to the
parent. Likewise, the send command actions and receive command actions are
synchronised, resulting in a comm command action. Communication is enforced,
and state and phase changes through the actions move state and move phase

are also allowed. A slightly simplified example is shown in Translation 4.

allow({comm_state, comm_command,

move_state, move_phase, ignored_command},

comm({receive_state|send_state -> comm_state,

receive_command|send_command -> comm_command},

...

||

X_CLASS(configuration(2, 1, [3],

(lambda k:CLASS. [])[Y_CLASS -> [3]]),

S_OFF, (lambda i:ID. S_OFF), [],

WhenPhase, [], 0)

||

Y_CLASS(configuration(3, 2, [4, 5],

(lambda k:CLASS. [])[Z_CLASS -> [4, 5]]),

S_OFF, (lambda i:ID. S_OFF), [],

WhenPhase, [], 0)

));

Translation 4: Simplified instantiation of the tree hierarchy. This describes,
among others, an FSM of class X with a child of class Y, that in turn has children
of class Z. Note that the parent of the X class FSM and the children of the Y

class FSM are not shown in this instantiation.

Our automatic translation generates the instantiation from the database that
stores all information on the hierarchy.

4.2. Validating the Formalisation of SML

The challenge in formalising SML is in correctly interpreting its language
constructs. We combined two strategies for assessing and improving the cor-
rectness of our semantics: informal discussions with the development team of
the language, supported by simulations run using the PVSS-II environment used
for developing FSMs, and applying formal analysis techniques on sample FSMs
taken from the control software.

The discussions with the SML development team were used to solidify our
initial understanding of SML and its main constructs. Based on these discus-
sions, we manually translated several FSMs into mCRL2, and validated the
resulting processes manually using the available simulation and visualisation
tools of mCRL2. This revealed a few minor issues with our understanding of
the semantics of SML, alongside many issues that could be traced back to slop-
piness in applying the translation from SML to mCRL2 manually.
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Figure 3: A schematic overview of our model of the Wheel subsystem, and its used FSMs.
The identifiers of the processes representing the FSMs are given between parentheses; these
were used in our analyses.

In response to the latter problem, we eliminated the need for manually
translating FSMs to mCRL2. To this end, we utilised the ASF+SDF meta-
environment (see [5, 36]) to rapidly prototype an automatic translator that,
ultimately, came to implement the translation scheme we described in the pre-
vious subsection. The Syntax Definition Formalism (SDF) was used to describe
the syntax of both SML and mCRL2, whereas the Algebraic Specification For-
malism (ASF) was used to express the term rewrite rules that are needed to
do the actual translation. Apart from the gains in speed and the consistency
in applying the transformations that were brought about by the automation,
the automation also served the purpose of formalising the informal semantics
of SML, since the language is mapped to a language that does have a formal
semantics.

The final details of our semantics were tested by analysing relatively well-
understood subsystems of the control software in mCRL2. We briefly discuss our
findings using a partly simplified subsystem, colloquially known as the Wheel,
see Figure 3. The Wheel subsystem is a component of the Resistive Plate
Chamber (RPC) subdetector of the CMS experiment. It belongs to the barrel
region of the RPC subdetector. Each Wheel subsystem contains 12 sectors, each
sector is equipped with 4 muon stations which are made of Drift Tube chambers.
We forego a detailed formal discussion of this subsystem (for details, we refer
to [37]), but only address our analysis of this subsystem using formal analysis
techniques, and the impact this had on our understanding of the semantics
and the transformation. It is important to keep in mind that the analysis was
conducted primarily to assess the quality of our translation, the correctness of
the subsystem being only secondary.

The mCRL2 specification of the Wheel subsystem was obtained by combin-
ing the mCRL2 processes obtained by running our prototype implementation
on each involved FSM. Generating the state space of the Wheel subsystem takes
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roughly one minute using the symbolic state space generation tools offered by
the LTSmin tools [38]. This toolset can be integrated in the mCRL2 toolset.
For the discussed configuration, the state space is still of modest proportions,
measuring slightly less than 5 million states and 24 million transitions. Varying
the number of children of class Sector causes a dramatic growth of the state
space. Using 3 instead of 2 children of class Sector yields roughly 800 million
states; using 4 children of class Sector, leads to 120 billion states, and generating
the state space requires half a day.

Apart from repeating the simulations and visualisations, at this stage we
also applied model checking to systematically probe the translation. Together
with the development team of the Wheel subsystem, a few basic requirements
were formalised in the modal µ-calculus [32], see Table 1.

The studied subsystem was considered to satisfy all stated properties. While
smoothing out details in the translation of SML to mCRL2, the deadlock-
freedom property was violated every now and then, indicating issues with our
interpretation of SML. These were mostly concerned with the semantics of the
blocking and non-blocking constructs of SML, and the complex constructs used
to model the message passing between FSMs and their children.

Requirement two, i.e., the absence of intermediate states in the when phase
was violated only once in our verification efforts. A more detailed scrutiny of the
run revealed a problem in our translation, which was subsequently fixed. This
second requirement is in fact a strengthening of the more natural requirement
that we study in the next section, requiring that an FSM cannot stay in the
when phase indefinitely. Such a property ensures that the logic of an FSM
eventually stabilises. Clearly, the latter property is satisfied if a move state

action of an FSM is always followed by a move phase action preceding another
move state action, which is expressed by requirement two.

The third requirement, stating the inevitability of a state change by a child
once such a state change has been commissioned, failed to hold. The violation
is caused by the overriding of commands by subsequent commands that are
issued immediately. Discussions with the development teams revealed that the
violations are real, i.e., they are within the range of real behaviour, suggesting
that our formalisation of SML was adequate, but the requirement was too strict.
The property was modified to ignore the spurious runs, resulting in the following
property:

nu X. [true]X && forall i,i c:ID, c:Command.

[comm command(i,i c,c)](mu Y. <true>true &&

[!(comm state(i c,i,c2s(c)) ||

exists c’:Command. comm command(i,i c,c’))]Y)

The fourth requirement also failed to hold. The formula that is checked
requires that in all reachable states of the system, each FSM eventually moves
to another state. The violation is similar spirited to the violation of the third
requirement, and, again found to comply to reality. The weakened requirement
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Table 1: Basic requirements for the Wheel subsystem; i:Id denotes an identifier of an FSM;
i c:Id denotes a child of FSM i; c:Command denotes a command;c2s(c) denotes the state
with the homonymous command name, e.g., c2s(ON) = ON.

All properties are invariant properties; this is formalised through nu X . [true]

X && f, which means that in every reachable state, property f should hold. The
universal quantifiers in the formulae express that the invariants should hold for
all combinations of nodes and commands.

1. Absence of deadlock, i.e. in every reachable state, a transition is enabled:

nu X. [true]X && <true>true

2. Absence of intermediate states in the when phase, i.e. in every
reachable state, after every move state action (expressed by the first
[move state(i,s)]), no move state action is possible (expressed by [exists

s:State. move state(i,s)]false), until a move phase(i,ActionPhase) ac-
tion has occurred ([!move phase(i, ActionPhase)]Y). Note that this im-
plies stability of the when phase.

nu X. [true]X && forall i:ID.

[exists s:State. move state(i,s)](nu Y.

[(!move phase(i,ActionPhase))]Y

&& [exists s:State. move state(i,s)]false)

3. Responsiveness, i.e. in every reachable state, the sending of a command
from node i to i c (denoted by [comm command(i,i c,c)]) is followed by a
comm state(i c, i, c2s(c)) action in a finite number of steps (denoted by
mu Y. [!comm state(i c, i, c2s(c))]), furthermore, <true>true ensures
that the least fixpoint subformula does not hold in deadlocked states.

nu X. [true]X && forall i,i c:ID, c:Command.

[comm command(i,i c,c)](mu Y.

<true>true && [!comm state(i c,i,c2s(c))]Y)

4. Progress, i.e. in every reachable state, it must be possible to perform a
move state action (denoted by <exists s:State. move state(i,s)>true)
within a finite number of steps, which, like before, is denoted by the least
fixpoint subformula.

nu X. [true]X && forall i:ID.

mu Y. <exists s:State. move state(i,s)>true ||

(<true>true && [true]Y)

that was subsequently agreed upon expresses the attainability of some state
change:

nu X. [true]X && forall i:ID.
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mu Y. <exists s:State. move state(i,s)>true || <true>Y

Neither visual inspection of the state space using 2D and 3D visualisation tools,
nor simulation using the mCRL2 simulators revealed any further incongruences
in our final formalisation of SML, sketched in the previous section.

5. Dedicated Tooling for Verification

Some desired properties, such as the absence of intermediate states, and,
more generally, the absence of loops through the when phase, can be checked
by analysing an FSM in isolation, using the transformation to mCRL2. How-
ever, the verification using the modal µ-calculus currently requires too much
overhead to serve as a basis for lightweight tooling that can be integrated in
the SML development environment, since their verification in mCRL2 requires
their complete state space. We explored the possibilities of using Bounded Model
Checking (BMC) [39, 40] in an attempt to improve on this situation. In the rest
of this section we focus on two problems that can be solved efficiently.

The first problem we consider is detecting livelocks that manifest them-
selves through loops in the when phase (i.e., generalising the stability property
expressed by requirement 2 in the previous section). We use an overapproxi-
mation for detecting such loops. This means that we are guaranteed to find all
loops a system may exhibit, and the absence of loops proves the absence of a
particular type of livelock in the system. However, we may detect loops that
cannot occur in practice because the circumstances under which these happen
may not be feasible. In practice, the class of loops that is detected is considered
relevant by the developers, and detection can be done in seconds. Even though
not every loop we detect might occur in practice, it does indicate a design flaw,
indicating unintended behaviour in the implementation.

The second problem we consider is the mutual reachability problem (i.e.,
generalising requirement 3 of the preceding section). Basically, we use an un-
derapproximation to detect whether there are states in an FSM that can never
reach all other states in the FSM. If our analysis reveals there are indeed such
states, it indicates that the FSM may become stuck in such states. While this
may constitute desired behaviour, it can also indicate a design flaw. Note that,
since we use an underapproximation, we may miss reachability issues that occur
in practice.

We report on the results we obtained using the Python implementation of our
dedicated verification tools, improving upon the performance of our prototype
in ASF+SDF.

5.1. Loop detection

The basic idea of BMC is to check for a counterexample in bounded runs.
If no bugs are found using the current bound, then the bound is increased until
either a bug is found, the problem becomes intractable, or some pre-determined
upper bound is reached upon which the verification is complete. The BMC
problem can be efficiently reduced to a propositional satisfiability problem, and

22



can therefore be solved by SAT methods. SAT procedures do not necessarily
suffer from the space explosion problem, and a modern SAT solver can handle
formulae with hundreds of thousands of variables or more, see e.g. [40].

We have applied BMC techniques for the detection of move to loops. As an
example of a move to loop, consider the excerpt of the TkControlGroup FSM
class in Listing 3, in which our tool found property violations. If an instance of
TkControlGroup has one child of class TkPowerGroup in state ANALOG ON RED

and one child of class FwCaenChannelCtrl in state ON, it will loop indefinitely
between these two states. Once this happens, an entire subsystem may enter
a livelock and become temporarily or permanently unresponsive; it may even
crash and bring down the entire control system.

state: ANALOG_ON_RED

...

when ( $ANY$TkPowerGroup not_in_state DIGITAL_ON_RED ) move_to LVMIXED

...

state: LVMIXED

...

when ( $ANY$TkPowerGroup in_state {ON, HVMIXED} ) move_to HVMIXED

when ( $ALL$FwCaenChannelCtrl in_state ON and

$ALL$TkPowerGroup in_state ANALOG_ON_RED ) move_to ANALOG_ON_RED

...

Listing 3: An excerpt from the TkControlGroup FSM that exhibits a loop
within the when phase.

This specific error was caused by an overlooked copy and paste from the when
clauses of another state. The error can easily be fixed by replacing the condition
to exit from ANALOG ON RED with when ( $ANY$TkPowerGroup not in state

ANALOG ON RED ) move to LVMIXED. With this fix incorporated, the FSM does
not exhibit any loops. We convert the loop detection problem into a graph
problem as follows. Let F be an FSM andM be a Kripke structure. A state in
M corresponds to the combined state of F and its children, e.g., if F is in state
ON and has two children which are in state OFF, then the corresponding state in
M is (ON, OFF, OFF). There is a transition between two states s1 and s2 inM if
and only if s1 can do a move to action to s2 in F . Moreover, every state in M
is an initial state. It thus suffices to inspect M instead of F , as stated by the
following lemma:

Lemma 1. F contains a loop of move to actions if and only if M contains a
loop.

We next translate the problem of detecting a loop inM into a SAT problem.
First, we consider executions of length k; afterwards, we show that we can
statically choose k such that we can find every loop.

Let the predicate in state be defined as follows: in state(s, p, i) holds if
and only if the process with identifier p is in state s after i steps. We assign
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the identifier zero to the FSM under consideration and the numbers 1, 2, 3, . . .
to its children. The resulting formula will have three components: the state
constraints, the transition relation and the loop condition.

Using the state constraints, we ensure that each FSM is always in exactly
one state. Moreover, the states of the children should not change during the
execution of the when phase, per the semantics in the previous section. This is
straightforwardly expressed as a Boolean formula on the in state predicate.

Next, we encode the transition relation: the relation between in state(s, 0, i)
and in state(s′, 0, i+1) for every i. In other words: the move to steps the parent
process is allowed to take. This involves converting the when clauses for each
state of the parent FSM, taking care the semantics as outlined in the previous
section is reflected. The last ingredient is the loop condition: if in state(s, 0, 0)
holds, then in state(s, 0, i) must hold for some i > 1, indicating that the parent
returned to the state in which it started.

The final SAT formula is obtained by taking the conjunction of the state
constraints, the transition relation and the loop condition. It is not hard to see
that if this formula is satisfiable, then there is a loop in M and hence in F . It
is more difficult to show that if there is a loop, then the formula is satisfiable.
We need an intermediary lemma before we can prove this result.

Lemma 2. Let F be an FSM. Suppose that F has children c1 and c2 of class t,
both of which are in state s. Then removing c2 will not affect the decision that
F takes in the when phase.

Proof. Let F ’ be a copy of F without c2. We prove this lemma by induction on
SML expressions, showing that no SML expression can distinguish between the
configuration before and after the removal. We have to consider the following
three categories:

• Simple: expressions of the form $(ANY|ALL)$P (in state|not in state)

X, e.g., $ANY$P in state A.

• Compound : an expression that is a conjunction, disjunction or negation of
expressions, e.g., ($ALL$P in state A) and (not ($ALL$P’ in state

B)).

• Multistate: a term of the form $(ANY|ALL)$P (in state|not in state)

{X1,...,XN}, e.g., $ANY$P in state {A, B}.

Note that a multistate (sub-)expression can always be rewritten to a com-
pound expression of simple expressions. If no simple expression can distinguish
between F and F ’, then no compound expression can distinguish between F and
F ’ either. Hence, it remains to show that no simple expression can distinguish
between F and F ’. Let s′ be a state other than s. It is easy to verify that the
four simple expressions of the form $(ANY|ALL)$P (in state|not in state)

s evaluate to the same result in F and F ’ and that the four simple expressions
of the form $(ANY|ALL)$P (in state|not in state) s’ evaluate to the same
result in F and F ’. This covers all cases, completing the proof. 2
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Let n be the total number of states of the FSM F and let nt be the total number
of states of each child class t. We now prove that we can find all loops in F .

Theorem 3. All possible loops in F can be found by considering paths of length
at most n in the fixed FSM configuration C, consisting of nt children of each
child class t.

Proof. Since F has n states, a longest possible loop contains at most n states.
Since every state in M is an initial state, every possible loop can by found by
doing n steps from an initial state.

It remains to show that all loops can be found by considering configuration C.
Let C ′ be the configuration obtained by adding a nonzero amount of children of
class t to C for each child class t. Assume that F admits a loop ` = s1, . . . , sk, s1
for C ′ but not for C. By the pigeon hole principle, C ′ must have at least two
children c1 and c2 of some class t∗, both in some state s∗. By Lemma 2, we
can remove c2 from C ′ to obtain a configuration C ′′ which again admits loop `.
Repeating this exhaustively, we obtain a configuration equal to C that admits
loop `. Contradiction. This completes the proof. 2

As a consequence of the above theorem, we can find all possible local loops that
are present in an FSM in isolation.

In practice, the number of children of a particular class t is typically well
below nt, meaning that some of the loops that can be detected using nt children
of class t may not be present in the actual system. While such configurations
may appear in future versions of the control system, signalling the presence of
a loop in configurations that do not occur in practice ultimately will result in
engineers ignoring the outcome of the analysis of our tools. However, using
the FSM database described in Section 2.1, the information about the actual
configurations of the control system can be retrieved. The same technique as
outlined above can be applied to these configurations.

5.2. The FSM State Reachability Problem

A second desirable behavioural property of an FSM is that all states should
remain potentially reachable during the execution of an FSM. That is, the FSM
should not become trapped in a subset of its states. While we can again easily
encode this property into the modal µ-calculus, we use a more direct approach
to detect violations of this property by constructing a graph that captures all
potential state changes. For this, we determine whether there is a configuration
of children such that F can execute a move to action from a state s to a state
s′; again, of course, following the semantics as outlined in the previous section.
Doing so for all pairs (s, s′) of states of F yields a graph encoding all possible
state changes of F . Note that also for this reachability property, we can build a
more accurate graph using the information found in the FSM database by de-
termining the set of potentially enabled edges using configurations that actually
occur in production.
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Computing the strongly connected components (SCCs) of the thus obtained
graph gives sufficient information to pinpoint violations to the reachability prop-
erty: the presence of more than a single SCC means that one cannot move back
and forth these SCCs (by definition of an SCC), and, therefore, their states.
Note that this is an under-approximation of all errors that can potentially ex-
ist, as the actual reachability dynamically depends on the configuration of the
children of an FSM. Still, as the state change graph of the HCAL DCS Node FSM
class in Figure 4 illustrates, issues can be found in production FSMs: the OFF

state can never be reached from any of the other states. Even though each state
in the HCAL DCS Node class has a clause that specifies a transition to its OFF

state, our tool found particular configurations in the control system for which
these transitions would never become enabled. Using the graphs generated by
our tools, such issues are quickly explained and located.

STANDBY

ON

ERROR

BUSY

OFF

Figure 4: The state change graph for the HCAL DCS Node FSM class. The solid lines are
bidirectional; the dotted lines are unidirectional state changes. The SCCs are indicated by
the dashed frames.

5.3. Results

The results using our dedicated tools for performing these behavioural sanity
checks on isolated FSMs are very satisfactory. The checks were performed on
the FSM databases of all LHC experiments, viz. CMS, LHCb, ATLAS, and
ALICE,3 using a 2006 laptop with an Intel T2400 Core 2 Duo processor and
1.5GB of RAM, i.e. modest requirements by today’s standards. Note that
similar experiments with the ASF+SDF prototype take several hours.

The results for local loop detection are reported in Table 2. For CMS four
different snapshots of the control software are available, whereas for the other
experiments, we have only got a single snapshot. The time of the snapshot is
reported in the “Month” column. The number of configurations that must be
checked is reported in the third column. Since the same configuration can occur
multiple times in the hierarchy, detection of a loop in a single configuration can
give rise to multiple nodes with the same loop; this is reported in the fourth

3We present partial results of ALICE here.
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column. The time it takes to detect loops in all configurations is reported in
seconds in the final column.

Note that the only nodes that can exhibit loops are those that have children,
hence the leafs of the hierarchy are excluded from the total number of nodes
reported in the fourth column. For CMS, November 2011, there are 408 different
configurations. Approximately 8, 300 of the 27, 500 nodes have children, and
roughly 1, 700 of these 8, 300 nodes have the potential to loop, which totals to
20% of the nodes that could contain local loops.

Month #Configurations #Nodes with local loops Time (sec.)

CMS 11-2011 408 1,695 of 8,326 64
01-2012 568 1,659 of 9,038 81
03-2012 564 1,546 of 9,045 82
05-2012 578 1,302 of 9,064 79

LHCb 11-2011 1,106 58 of 16,139 126
ATLAS 05-2012 1,746 107 of 12,963 271
ALICE 05-2012 410 712 of 4,623 96

Table 2: Results of our BMC loop detection tool.

A manual inspection of a logfile of the operational control system revealed
that one loop manifested itself at least three times on several nodes on a single
day. An excerpt of the logfile containing the loop is shown in Figure 5. No
occurrence of the other detected loops was found in the logfiles of that month.

...

Sun Nov 06 15:23:57 2011 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

Sun Nov 06 15:23:57 2011 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

Sun Nov 06 15:23:57 2011 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

Sun Nov 06 15:23:57 2011 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

Sun Nov 06 15:23:57 2011 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

Sun Nov 06 15:23:57 2011 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

Sun Nov 06 15:23:57 2011 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

...

Sun Nov 06 15:38:08 2011 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

Sun Nov 06 15:38:08 2011 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

Sun Nov 06 15:38:08 2011 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

Sun Nov 06 15:38:08 2011 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

Sun Nov 06 15:38:08 2011 - [PIXELBARREL_BMI_S7] in state [ANALOG_ON_RED]

Sun Nov 06 15:38:08 2011 - [PIXELBARREL_BMI_S7] in state [LVMIXED]

...

Figure 5: Logfile with evidence of the loop detected by our BMC loop detection tool.

Interestingly, most of the loops we detected involved two states only. Note
that the size of the average FSM class, in general more than 100 lines of SML
code and at least two children, means that even short loops such as the ones
identified so far remain unnoticed and are hard to pinpoint.

Apart from local loops, we also verified pairwise reachability in all configu-
rations of the control systems. These results are reported in Table 3. Columns
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Month #Configurations #Nodes with reachability
violations

Time (min.)

CMS 11-2011 408 837 of 8,326 16
01-2012 568 1,353 of 9,038 19
03-2012 564 1,313 of 9,045 19
05-2012 578 903 of 9,064 18

LHCb 11-2011 1,106 430 of 16,139 25
ATLAS 05-2012 1,746 2,089 of 12,963 61
ALICE 05-2012 410 1,836 of 4,623 23

Table 3: Results of our BMC reachability detection tool.

in this table are similar to the ones in Table 2, except that the time is reported
in minutes instead of seconds.

We again elaborate further on the results for CMS, November 2011. The
408 configurations that were verified expand to 8, 326 nodes in the hierarchy. Of
these nodes, 837 were shown to contain reachability problems, which amounts
to over 10% of the non-leaf nodes in the hierarchy. The increase in reachability
violations in CMS between November 2011 and January 2012 is caused by an
extended maintenance period, in which our tools were not yet available to the
FSM developers.

Using our Python implementation, using a standard SMT solver such as
Yices [41] as backend, and running the analysis on off-the-shelf hardware, local
loops can be detected in about a minute, and reachability violations can be
detected within the hour for the complete control software of a detector. Run-
ning checks on configurations in isolation is even quicker, which means that the
checks can easily be incorporated in the design cycle of the FSMs. The checks
have been integrated in the development environment used at CERN. For a
description of the integration, and an exploration of additional checks that can
be implemented as a dedicated tool, see [42].

6. Conclusion

We discussed and studied the State Machine Language (SML) that is used
for programming the control software of the CMS experiment and several other
large experiments running at the Large Hadron Collider. To fully understand
the language, we formalised it using the process algebraic language mCRL2. The
quality of our formalisation was assessed using a combination of simulation and
visualisation of the behaviour of FSMs in isolation and formally verifying small
subsystems using model checking. To facilitate, among others, the assessment,
the translation of SML to mCRL2 was implemented using the ASF+SDF meta-
environment. Based on our understanding of the semantics of SML, we have
built dedicated tools for performing sanity checks on isolated FSMs. Using these
tools we found several issues in the control system. These tools have been well-
received by the engineers at CERN, and have recently been integrated in the
development environment.
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Our formalisation of SML opens up the possibility of verifying realistically
large subsystems of the control system; clearly, it will be one of the most chal-
lenging verification problems currently available. In our analysis of the Wheel
subsystem, we have only used a modest set of tools for manipulating the state
space. Attempts to use compositional verification based on behavioural equiv-
alence reductions were not successful. Symmetry reduction, partial order re-
duction, parallel exploration techniques, and abstract interpretation were not
considered at this point. It remains to be investigated how such techniques fare
on this problem.
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Appendix A. ASF and SDF files

Appendix A.1. midtools.sdf

%% Module that defines the identifiers used throughout our languages.

module midtools

imports

basic/Whitespace

basic/Comments

basic/Booleans

basic/Integers

exports

sorts

%% B3 from the mCRL2 spec.

MId

MIds

lexical restrictions

MId -/- [a-zA -Z0 -9\_\’]

lexical syntax

[a-zA-Z\_] ([a-zA-Z0 -9\_\’])* -> MId

context -free syntax

%% Identifiers (B3)

{MId ","}+ -> MIds

%% Concatenate two MIds.

concat(MId , MId) -> MId

%% Return whether an MId is in a list of MIds.

contains(MId , MId*) -> Boolean

%% Given a list , remove all duplicates . If the list contains two identical elements ,

%% only the *rightmost * element will be preserved .

removeDuplicates(MId*) -> MId*

%% Remove all occurrences of $mid from a list.

remove(MId , MId*) -> MId*

%% Compute the set intersection of two lists. The resulting list has no duplicates .

intersect(MId*, MId*) -> MId*

%% Returns true iff the list is empty.

empty(MId*) -> Boolean

%% Returns the length of a list of MIds.

length(MId*) -> Integer

hiddens

variables

"$mid "[0 -9]* -> MId

"$mid +"[0 -9]* -> MId+

"$mid *"[0 -9]* -> MId*

"$i" -> Integer

lexical variables

"# midHead "[0 -9]* -> [a-zA-Z\_]

"# midTailChar "[0 -9]* -> ([a-zA-Z0 -9\_\’])

"# midTail "[0 -9]* -> ([a-zA-Z0 -9\_\’])*

Appendix A.2. midtools.asf

equations

[concat -1]

concat(mid(# midHead1 #midTail1), mid(# midHead2 #midTail2 )) = mid(# midHead1 #midTail1 #midHead2 #midTail2)

[contains -empty]

contains($mid , ) = false

[contains -match]

contains($mid , $mid $mid*) = true

[contains -nomatch]

$mid1 != $mid2

===>

contains($mid1 , $mid2 $mid*) = contains($mid1 , $mid*)

[removeDuplicates -empty]

removeDuplicates () =

[removeDuplicates -many -nonunique]

contains($mid , $mid*) == true

===>
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removeDuplicates($mid $mid*) = removeDuplicates($mid*)

[removeDuplicates -many -unique]

contains($mid , $mid*) == false

===>

removeDuplicates($mid $mid*) = $mid removeDuplicates($mid*)

[remove -empty]

remove($mid , ) =

[remove -many -nomatch]

$mid1 != $mid2

===>

remove($mid1 , $mid2 $mid*) = $mid2 remove($mid1 , $mid*)

[remove -many -match]

remove($mid , $mid $mid*) = remove($mid , $mid*)

[intersect -empty]

intersect(, $mid *2) =

[intersect -many -match]

contains($mid , $mid *2) == true

===>

intersect($mid $mid*1, $mid *2) = $mid intersect($mid*1, $mid *2)

[intersect -many -nomatch]

contains($mid , $mid *2) == false

===>

intersect($mid $mid*1, $mid *2) = intersect($mid*1, $mid *2)

[empty -true]

empty() = true

[empty -false]

empty($mid+) = false

[length -empty]

length () = 0

[length -many]

$i := length($mid*)

===>

length($mid $mid*) = $i + 1

Appendix A.3. statenametools.sdf

module statenametools

imports

basic/Whitespace

basic/Comments

basic/Booleans

basic/Integers

midtools

exports

sorts

%% B3 from the mCRL2 spec.

StateName

StateNames

StateTail

MIdTail

lexical restrictions

StateName -/- [a-zA-Z0 -9\_\’\-]

StateTail -/- [a-zA-Z0 -9\_\’\-]

MIdTail -/- [a-zA-Z0 -9\_\’]

lexical syntax

[a-zA-Z0 -9\_\’\-]* -> StateTail

[a-zA-Z\_] ([a-zA-Z0 -9\_\’\-])* -> StateName

[a-zA-Z0 -9\_\’]* -> MIdTail

context -free syntax

%% Identifiers (B3)

{StateName ","}+ -> StateNames

%% Concatenate two MIds.

concatS(StateName , StateName) -> StateName

%% Convert to MId

toMid(StateName) -> MId

toMid2(StateTail) -> MIdTail

concatX(MId , MIdTail) -> MId

concatY(MIdTail , MIdTail) -> MIdTail

%% Convert to StateName

toStateName(MId) -> StateName
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toStateName2(MIdTail) -> StateTail

concatZ(StateName , StateTail) -> StateName

concatZA(StateTail , StateTail) -> StateTail

%% Return whether an MId is in a list of MIds.

containsS(StateName , StateName *) -> Boolean

%% Given a list , remove all duplicates . If the list contains two identical elements ,

%% only the *rightmost * element will be preserved .

removeDuplicatesS(StateName *) -> StateName*

%% Remove all occurrences of $mid from a list.

removeS(StateName , StateName *) -> StateName*

%% Compute the set intersection of two lists. The resulting list has no duplicates .

intersectS(StateName*, StateName *) -> StateName*

%% Returns true iff the list is empty.

emptyS(StateName *) -> Boolean

%% Returns the length of a list of MIds.

lengthS(StateName *) -> Integer

hiddens

variables

"$stateName "[0 -9]* -> StateName

"$stateName +"[0 -9]* -> StateName+

"$stateName *"[0 -9]* -> StateName*

"$i" -> Integer

"$midTail "[0 -9]* -> MIdTail

"$stateTail "[0 -9]* -> StateTail

lexical variables

"# stateNameHead "[0 -9]* -> [a-zA-Z\_]

"# stateNameTailChar "[0 -9]* -> ([a-zA-Z0 -9\_\’\-])

"# midHead "[0 -9]* -> [a-zA-Z\_]

"# midTail "[0 -9]* -> ([a-zA-Z0 -9\_\’])*

"# midTailChar "[0 -9]* -> [a-zA-Z0 -9\_\’]

"# stateNameTail "[0 -9]* -> ([a-zA -Z0 -9\_\’\-])*

"# dashChar "[0 -9]* -> [\-]

Appendix A.4. statenametools.asf

equations

[concats -1]

concatS(statename (# stateNameHead1 #stateNameTail1), statename (# stateNameHead2 #stateNameTail2 )) =

statename (# stateNameHead1 #stateNameTail1 #stateNameHead2 #stateNameTail2)

[toMid -1]

$midTail := toMid2(statetail (# stateNameTail1 ))

===>

toMid(statename (# stateNameHead1 #stateNameTail1 )) =

concatX(mid(# stateNameHead1), $midTail)

[toMid2 -empty]

toMid2 () =

[toMid2 -single -dash]

toMid2(statetail (# dashChar #stateNameTail )) =

concatY(_, toMid2(statetail (# stateNameTail )))

[toMid2 -single -anychar]

toMid2(statetail (# midTailChar #stateNameTail )) =

concatY(midtail (# midTailChar), toMid2(statetail (# stateNameTail )))

[concatX -mid -midtail]

concatX(mid(# midHead #midTail), midtail (# midTail2 )) = mid(# midHead #midTail #midTail2)

[concatY -mitail -midtail]

concatY(midtail (# midTail), midtail (# midTail2 )) = midtail (# midTail #midTail2)

[concatZ -statename -statetail]

concatZ(statename (# stateNameHead1 #stateNameTail1), statetail (# stateNameTail2 )) =

statename (# stateNameHead1 #stateNameTail1 #stateNameTail2)

[toStatename -1]

$stateTail := toStateName2(midtail (# midTail ))

===>

toStateName(mid(# midHead #midTail )) = concatZ(statename (# midHead), $stateTail)

[toStateName2 -empty]

toStateName2 () =

[toStateName2 -single]

toStateName2(midtail (# midTailChar #midTail )) =

concatZA(statetail (# midTailChar), toStateName2(midtail (# midTail )))

[concatZA -1]
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concatZA(statetail (# stateNameTail1), statetail (# stateNameTail2 )) =

statetail (# stateNameTail1 #stateNameTail2)

[containss -empty]

containsS($stateName , ) = false

[containss -match]

containsS($stateName , $stateName $stateName *) = true

[containss -nomatch]

$stateName1 != $stateName2

===>

containsS($stateName1 , $stateName2 $stateName *) =

containsS($stateName1 , $stateName *)

[removeDuplicatess -empty]

removeDuplicatesS () =

[removeDuplicatesS -many -nonunique]

containsS($stateName , $stateName *) == true

===>

removeDuplicatesS($stateName $stateName *) =

removeDuplicatesS($stateName *)

[removeDuplicatess -many -unique]

containsS($stateName , $stateName *) == false

===>

removeDuplicatesS($stateName $stateName *) =

$stateName removeDuplicatesS($stateName *)

[removes -empty]

removeS($stateName , ) =

[removes -many -nomatch]

$stateName1 != $stateName2

===>

removeS($stateName1 , $stateName2 $stateName *) =

$stateName2 removeS($stateName1 , $stateName *)

[removes -many -match]

removeS($stateName , $stateName $stateName *) =

removeS($stateName , $stateName *)

[intersects -empty]

intersectS(, $stateName *2) =

[intersects -many -match]

containsS($stateName , $stateName *2) == true

===>

intersectS($stateName $stateName *1, $stateName *2) =

$stateName intersectS($stateName *1, $stateName *2)

[intersects -many -nomatch]

containsS($stateName , $stateName *2) == false

===>

intersectS($stateName $stateName *1, $stateName *2) =

intersectS($stateName *1, $stateName *2)

[emptys -true]

emptyS () = true

[emptys -false]

emptyS($stateName +) = false

[lengths -empty]

lengthS () = 0

[lengths -many]

$i := lengthS($stateName *)

===>

lengthS($stateName $stateName *) = $i + 1

Appendix A.5. cfsm.sdf

%% Authors:

%% Vincent Kusters

%% Dennis Schunselaar

%% changed by:

%% Sander Leemans

module cfsm

imports

basic/Comments

basic/Whitespace

midtools

statenametools

exports

context -free start -symbols
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FSMSpecification

sorts

FSMSpecification

FSMClass

FSMStateClause

FSMWhenClause

FSMReferer

FSMActionClause

FSMStatement

FSMParameter

FSMParameterDecl

FSMExpression

FSMChildrenSpec

FSMChildrenAny

FSMChildrenAll

FSMChildrenAnySpecific

FSMChildrenAnyFwChildren

FSMChildrenAllSpecific

FSMChildrenAllFwChildren

FSMClassName

FSMStateName

FSMStateNameSpec

FSMActionName

lexical syntax

"!" "=" ~[\n]* [\n] -> LAYOUT

"/ associated" ~[\n]* [\n] -> LAYOUT

"/ ASSOCIATED" ~[\n]* [\n] -> LAYOUT

context -free syntax

%% Rule for the top level sort.

FSMClass* -> FSMSpecification

%% Rules for the various clauses.

"class: $FWPART_$TOP$" FSMClassName FSMStateClause+ -> FSMClass

"state:" FSMStateName FSMWhenClause* FSMActionClause* -> FSMStateClause

"when" "(" FSMExpression ")" FSMReferer -> FSMWhenClause

"action :" FSMActionName FSMParameterDecl? FSMStatement* -> FSMActionClause

%% Rules for the statements .

"(" "string" FSMParameter ")" -> FSMParameterDecl

MId "=" MId -> FSMParameter

MId "=" "\"" MId* "\"" -> FSMParameter

"move_to" FSMStateName -> FSMStatement

"do" FSMActionName FSMChildrenSpec -> FSMStatement

"do" FSMActionName "(" FSMParameter ")" FSMChildrenSpec -> FSMStatement

"if" "(" FSMExpression ")" "then" FSMStatement+ ("else" FSMStatement +)? "endif" -> FSMStatement

"set" FSMParameter -> FSMStatement

%% Rules for the referers.

"move_to" FSMStateName -> FSMReferer

"stay_in_state" FSMStateName -> FSMReferer

"do" FSMActionName -> FSMReferer

%% Rules for expressions .

FSMChildrenSpec "in_state" FSMStateNameSpec -> FSMExpression

FSMChildrenSpec "not_in_state" FSMStateNameSpec -> FSMExpression

"not" "(" FSMExpression ")" -> FSMExpression

"(" FSMExpression ")" -> FSMExpression

FSMExpression "and" FSMExpression -> FSMExpression {left}

FSMExpression "or" FSMExpression -> FSMExpression {left}

%% Rules for state name specifications .

FSMStateName -> FSMStateNameSpec

"{" {StateName ","}* "}" -> FSMStateNameSpec

%% Rules for sets of children.

"(" FSMChildrenSpec ")" -> FSMChildrenSpec

FSMChildrenAny -> FSMChildrenSpec

FSMChildrenAll -> FSMChildrenSpec

FSMChildrenAnySpecific -> FSMChildrenAny

FSMChildrenAnyFwChildren -> FSMChildrenAny

FSMChildrenAllSpecific -> FSMChildrenAll

FSMChildrenAllFwChildren -> FSMChildrenAll

"$ANY$" FSMClassName -> FSMChildrenAnySpecific

"$ANY$FwCHILDREN" -> FSMChildrenAnyFwChildren

"$ANY$FwCHILDREN" -> FSMChildrenAnySpecific {reject}

"$ALL$" FSMClassName -> FSMChildrenAllSpecific

"$ALL$FwCHILDREN" -> FSMChildrenAllFwChildren

"$ALL$FwCHILDREN" -> FSMChildrenAllSpecific {reject}
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MId -> FSMClassName

StateName -> FSMStateName

MId -> FSMActionName

Appendix A.6. mcrlt.sdf

%% Author: Vincent Kusters.

module mcrlt

imports

basic/Whitespace

basic/Comments

basic/Integers

midtools

exports

sorts

%% Number

%% B4

SortExpr

Domain

SortSpec

SortDecl

ConstrDecl

ProjDecl

ProjDecls

%% B5

IdDecl

IdsDecl

OpSpec

OpDecl

%% B6

EqnSpec

EqnDecl

%% B7

DataExpr

DataExprs

BagEnumElt

BagEnumElts

IdInit

IdInits

%% B8

MAId

MAIdSet

CommExpr

CommExprSet

RenExpr

RenExprSet

%% B9

ProcExpr

%% B10

ActDecl

ActSpec

%% B11

ProcDecl

ProcSpec

Init

%% B12

MCRL2Spec

lexical restrictions

MId -/- [a-zA -Z0 -9\_\’]

context -free start -symbols

MCRL2Spec

lexical syntax

%% We disallow comments starting with "%%" , since this leads to

%% ambiguity with ASF+SDF comments.

[\r\t\n\ ] -> LAYOUT

"%" (~[\%] ~[\n]*)? [\n] -> LAYOUT

%% Identifiers (B3)

%% We will use Integer instead of Number.

%% " -"?[0 -9][0 -9]* -> Number %% slightly modified

context -free syntax

%% Keywords (B1)

"sort" -> MId {reject}

38



"cons" -> MId {reject}

"map" -> MId {reject}

"var" -> MId {reject}

"eqn" -> MId {reject}

"act" -> MId {reject}

"proc" -> MId {reject}

"init" -> MId {reject}

"delta" -> MId {reject}

"tau" -> MId {reject}

"sum" -> MId {reject}

"block" -> MId {reject}

"allow" -> MId {reject}

"hide" -> MId {reject}

"rename" -> MId {reject}

"comm" -> MId {reject}

"struct" -> MId {reject}

"Bool" -> MId {reject}

"Pos" -> MId {reject}

"Nat" -> MId {reject}

"Int" -> MId {reject}

"Real" -> MId {reject}

"List" -> MId {reject}

"Set" -> MId {reject}

"Bag" -> MId {reject}

"true" -> MId {reject}

"false" -> MId {reject}

"whr" -> MId {reject}

"end" -> MId {reject}

"lambda" -> MId {reject}

"forall" -> MId {reject}

"exists" -> MId {reject}

"div" -> MId {reject}

"mod" -> MId {reject}

"in" -> MId {reject}

%% Sort expressions and sort declarations (B4)

"Bool" -> SortExpr

"Pos" | "Nat" | "Int" | "Real" -> SortExpr

"List" "(" SortExpr ")" -> SortExpr

"Set" "(" SortExpr ")" -> SortExpr

"Bag" "(" SortExpr ")" -> SortExpr

MId -> SortExpr

"(" SortExpr ")" -> SortExpr

Domain "->" SortExpr -> SortExpr

{SortExpr "#"}+ -> Domain

"sort" SortDecl+ -> SortSpec

MIds ";" -> SortDecl

MIds "=" SortExpr ";" -> SortDecl

MIds "=" "struct" {ConstrDecl "|"}+ ";" -> SortDecl

%% Difference with the specification in the reader:

%% the "? MId" part is obligatory .

MId ("(" ProjDecls ")")? ("?" MId) -> ConstrDecl

(MId ":")? Domain -> ProjDecl

{ProjDecl ","}+ -> ProjDecls

%% Declarations of constructors and mappings (B5)

MId ":" SortExpr -> IdDecl

%% According to the spec , this is the rule. But this leads

%% to problems when parsing "proc S(b:Bool) = ...".

%% MIds ":" SortExpr ";" -> IdsDecl

MIds ":" SortExpr ";"? -> IdsDecl

("cons" | "map") OpDecl+ -> OpSpec

IdsDecl ";" -> OpDecl

%% Declaration of equations (B6)

"eqn" EqnDecl+ -> EqnSpec

"var" IdsDecl+ "eqn" EqnDecl+ -> EqnSpec

DataExpr "=" DataExpr ";" -> EqnDecl

DataExpr "->" DataExpr "=" DataExpr ";" -> EqnDecl

%% Data expressions (B7)

MId | Integer | "true" | "false" | "[]" | "{}" -> DataExpr

"[" DataExprs "]" -> DataExpr

"{" DataExprs "}" -> DataExpr

"{" BagEnumElts "}" -> DataExpr

"{" IdDecl "|" DataExpr "}" -> DataExpr

"(" DataExpr ")" -> DataExpr

%% DataExpr with arguments was moved to the context -free priority section.

%% The actual rule is as follows , but this leads to ambiguities when parsing " -1".

%% ("!" | "-" | "#") DataExpr -> DataExpr

("!" | "#") DataExpr -> DataExpr

(" forall" | "exists ") IdDecl "." DataExpr -> DataExpr

%% DataExpr with the binary operators was moved to the context -free priority

%% section.

"lambda" IdDecl "." DataExpr -> DataExpr

DataExpr "whr" DataExprs "end" -> DataExpr

{DataExpr ","}+ -> DataExprs

DataExpr ":" DataExpr -> BagEnumElt
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{BagEnumElt ","}* -> BagEnumElts

MId "=" DataExpr -> IdInit

{IdInit ","}* -> IdInits

%% Communication and renaming (B8)

{MId "|"}+ -> MAId

"{" {MAId ","}* "}" -> MAIdSet

MAId ("->" MId)? -> CommExpr

"{" {CommExpr ","}* "}" -> CommExprSet

MId "->" MId -> RenExpr

"{" {RenExpr ","}* "}" -> RenExprSet

%% Process expressions (B9)

MId -> ProcExpr

MId "(" DataExprs ")" -> ProcExpr

MId "(" IdInits ")" -> ProcExpr

"delta" -> ProcExpr

"tau" -> ProcExpr

%% Sum was moved to the context -free priorities section.

("block" | "allow" | "hide") "(" MAIdSet "," ProcExpr ")" -> ProcExpr

"rename" "(" RenExprSet "," ProcExpr ")" -> ProcExpr

"comm" "(" CommExprSet "," ProcExpr ")" -> ProcExpr

"(" ProcExpr ")" -> ProcExpr

%% ProcExpr with binary operators was moved to the context -free

%% priorities section.

%% Action declaration (B10)

MIds (":" Domain )? ";" -> ActDecl

"act" ActDecl+ -> ActSpec

%% Process and initial state declaration (B11)

MId "=" ProcExpr ";" -> ProcDecl

MId "(" {IdsDecl ","}+ ")" "=" ProcExpr ";" -> ProcDecl

"proc" ProcDecl+ -> ProcSpec

"init" ProcExpr ";" -> Init

%% Syntax of an mCRL2 specification (B12)

%%(SortSpec | OpSpec | EqnSpec | ActSpec | ProcSpec | Init )+ -> MCRL2Spec

SortSpec* OpSpec* EqnSpec* ActSpec* ProcSpec* Init* -> MCRL2Spec

context -free priorities

%% B9

ProcExpr "@" ProcExpr -> ProcExpr >

%% According to the spec , this should be:

%% "sum" "(" IdDecl "," ProcExpr ")" -> ProcExpr

"sum" {IdDecl ","}+ "." ProcExpr -> ProcExpr >

ProcExpr "." ProcExpr -> ProcExpr {right} >

ProcExpr "<<" ProcExpr -> ProcExpr {left} >

{

ProcExpr "||" ProcExpr -> ProcExpr {right}

ProcExpr "|" ProcExpr -> ProcExpr {right}

ProcExpr "||_" ProcExpr -> ProcExpr {right}

} >

DataExpr "->" ProcExpr "<>" ProcExpr -> ProcExpr >

DataExpr "->" ProcExpr -> ProcExpr >

ProcExpr "+" ProcExpr -> ProcExpr {right} >

%% B7

DataExpr "(" DataExprs ")" -> DataExpr >

DataExpr ("|>" | "<|") DataExpr -> DataExpr {left} >

DataExpr "++" DataExpr -> DataExpr {left} >

DataExpr ("." | "*" | "div") DataExpr -> DataExpr {left} >

DataExpr ("+" | "-") DataExpr -> DataExpr {left} >

DataExpr ("mod" | "in") DataExpr -> DataExpr {left} >

DataExpr ("==" | "!=" | "<" | ">" | "<=" | ">=") DataExpr -> DataExpr {left} >

DataExpr ("&&" | "||" | "=>") DataExpr -> DataExpr {left} >

DataExpr "[" DataExpr "->" DataExpr "]" -> DataExpr

Appendix A.7. cfsm2mcrl2.sdf

%% Module for converting the CERN Finite State Machines into mcrl2 code.

module cfsm2mcrl2

imports cfsm

imports mcrlt

imports genericclauses

imports midtools

imports statenametools

imports basic/Integers

imports basic/BoolCon

exports

context -free start -symbols

SortDecl+ ProcExpr MId* StateName*
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context -free syntax

%% Main convertor function to convert a FSM class to an MCRL2 specification .

cfsm2mcrl2(FSMClass +) -> ProcSpec+

%% Convertor function to convert a FSM class to an MCRL2 specfication , with

%% the added property that the result will be a bottom monitor. That is , it

%% has no children and whenever it would normally check the state of children ,

%% it will instead check randomStateChanges .

cfsm2mcrl2bm(FSMClass +) -> ProcSpec+

%% Function to generate the PType , State and Command sorts from a number of

%% FSM classes.

fsmGenerateSorts(FSMClass*, FSMClass +) -> SortDecl+

%% Function to get the process name of a specification

fsmGetClassName(FSMSpecification) -> MId*

fsmGetClassNameBM(FSMSpecification) -> MId*

getFirstClass(MId*) -> MId

%% Function to get the states of a specification

fsmGetInitialState(FSMSpecification) -> MId

getFirstState(StateName *) -> StateName

%% Function to get the commands of a specification

fsmGetCommands(FSMSpecification) -> MId*

%% Function to generate the list of process names from a list of process

%% specifications .

mcrl2GetPTypes(ProcSpec +) -> SortDecl

hiddens

sorts

ProcName

ActionClauseTuple

UniqueProcName

PC

StateActionsChildrenTuple

ActionChildrenTuple

context -free syntax

%% %%%%%%%%%% Specification Conversion

%% We need to be able to refer to the name of the current process from inside

%% the conversion functions.

MId -> ProcName

Integer -> PC

<FSMActionName , PC, DataExpr , ProcExpr > -> ActionClauseTuple

%% Function to convert a number of FSM classes into process definitions .

fsmClasses2Mcrl2Procs(FSMClass+, BoolCon) -> ProcSpec+

%% The main converion function to convert one FSM Class into a Process.

fsmClass2Mcrl2Proc(FSMClass , BoolCon) -> ProcSpec

fsmClassName2ProcName(MId , BoolCon) -> MId

%% Conversion functions for a list of states and a single state in the FSM.

convertStates(FSMStateClause*, ProcName , BoolCon , StateName *) -> ProcExpr

convertState(FSMStateClause , ProcName , BoolCon , StateName *) -> ProcExpr

%% Conversion functions for the parts in each state. These functions are

%% grouped by phase. First the functions needed in the when -phase. Functions

%% that are requird in both phases are listed in with the when -phase.

%% The conversion of the when -clauses requires a third parameter : the name

%% of the state we are currently converting .

convertWhenClauses(FSMWhenClause*, ProcName , StateName , ActionClauseTuple *) -> ProcExpr

%% In the conversion of a referer , the third parameter is a mcrl2 - statename

convertReferer(FSMReferer , ProcName , MId , ActionClauseTuple *) -> ProcExpr

convertExpr(FSMExpression) -> DataExpr

convertChildrenSpec(FSMChildrenSpec) -> DataExpr

convertStateNameSpec(FSMStateNameSpec) -> DataExpr

%% Conversion functions for the action clauses.

combineActionClauseComponents(ActionClauseTuple*, ProcName , StateName) -> ProcExpr

%% Helper function for convertActionClauseComponents and convertReferer .

%% Returns the fsm action name , mcrl2 condition and mcrl2 effect of an fsm

%% action clause. Action clauses also need the name of the state. As with the

%% when -clauses , this is the third parameter.

gatherComponentsFromActionClauses(FSMActionClause*, ProcName , StateName , PC) -> <ActionClauseTuple*, PC >

%% Helper function for convertActionClauseComponents .

getActionClauseTupleForActionName(ActionClauseTuple*, FSMActionName) -> ActionClauseTuple

%% Given a list of ActionClauseTuples , construct the summand that selects the

%% right pc for the received command.

constructClauseSelectors(ActionClauseTuple*, ProcName) -> ProcExpr
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%% Conversion functions for the statements inside action clauses.

convertStatements(FSMStatement*, ProcName , PC, PC, PC) -> <ProcExpr ,PC>

convertStatement(FSMStatement , ProcName , PC, PC, PC) -> <ProcExpr ,PC>

%% Helper function for the translation of if statements .

insertIfBlockingWaiter(ProcName , PC) -> ProcExpr

%% Helpers for the generation of bottom monitors.

inAnyState(StateName *) -> DataExpr

createObedientCommandAcceptor(FSMActionClause*, ProcName , StateName *) -> ProcExpr

%% For the when clauses we need to add a clause describing that we are in a certain

%% state.

isStateCheck(FSMStateName) -> DataExpr

isStateCheck(FSMStateName , MId) -> DataExpr

isCommandCheck(MId) -> DataExpr

"isStateCheck" -> DataExpr {reject}

"isCommandCheck" -> DataExpr {reject}

%% Function to prepend ’is_ ’ to an identifier ( MYID => is_MYID ).

toMcrlIsFunction(MId) -> MId

%% Convert a name of a state into an StateName as we will use in mCRL2

%% ( OFF => S_OFF ).

toMcrlStateName(StateName) -> MId

toMcrlStateName(FSMActionName) -> MId

"toMcrlStateName" -> DataExpr {reject}

"toMcrlStateName" -> MId {reject}

%% Convert a name of a command into a CommandName as we wil use in mCRL2

%% ( OFF => C_OFF ).

toMcrlCmdName(MId) -> MId

toMcrlCmdNames(MId*) -> MId*

%% %%%%%%%%%% Sort generation

%% These functions are required to generate the sort declaratons from the

%% FSM classes.

%% First functions to create a declaration that is used in a struct from the

%% name of the class/state/action. So from some class myClass it

%% generates : ’Class ? is_myClass ’. Similarly for states and actions.

convertClassNamesToTypeConstrDecl(MId*, MId*) -> {ConstrDecl "|"}+

convertStateNamesToStateConstrDecl(StateName *) -> {ConstrDecl "|"}+

convertActionNamesToCmdConstrDecl(MId*) -> {ConstrDecl "|"}+

%% The following functions are traversal functions that simply gather all definitions

%% of a ClassName/ StateName/Action name in the FSM classes that were supplied.

collectClasses(FSMSpecification ,MId*) -> MId* {traversal(accu ,top -down ,continue )}

collectClasses(FSMClass ,MId*) -> MId* {traversal(accu ,top -down ,continue )}

collectClasses(FSMChildrenAnySpecific ,MId*) -> MId* {traversal(accu ,top -down ,continue )}

collectClasses(FSMChildrenAllSpecific ,MId*) -> MId* {traversal(accu ,top -down ,continue )}

collectStates(FSMSpecification , StateName *) -> StateName* {traversal(accu ,top -down ,continue )}

collectStates(FSMStateClause+, StateName *) -> StateName* {traversal(accu ,top -down ,continue )}

collectStates(FSMStateClause , StateName *) -> StateName* {traversal(accu ,top -down ,continue )}

collectStates(FSMWhenClause*, StateName *) -> StateName* {traversal(accu ,top -down ,continue )}

collectStates(FSMWhenClause , StateName *) -> StateName* {traversal(accu ,top -down ,continue )}

collectStates(FSMStateNameSpec , StateName *) -> StateName* {traversal(accu ,top -down ,continue )}

collectCommands(FSMSpecification ,MId*) -> MId* {traversal(accu ,top -down ,continue )}

collectCommands(FSMActionClause ,MId*) -> MId* {traversal(accu ,top -down ,continue )}

collectCommands(FSMStatement ,MId*) -> MId* {traversal(accu ,top -down ,continue )}

collectCommands(FSMReferer ,MId*) -> MId* {traversal(accu ,top -down ,continue )}

collectActionNames(FSMSpecification , MId*) -> MId* {traversal(accu ,top -down ,continue )}

collectActionNames(FSMActionClause*, MId*) -> MId* {traversal(accu ,top -down ,continue )}

%% Function to add something to a set such that we do not introduce duplicates .

addToSet(MId ,MId*) -> MId*

addToSetStates(StateName , StateName *) -> StateName*

%% addToSetChildrenSpec (FSMChildrenSpec , FSMChildrenSpec *) -> FSMChildrenSpec *

union(MId*,MId*) -> MId*

unionStates(StateName*, StateName *) -> StateName*

%% filterActionChildrenTuples (MId*, ActionChildrenTuple *) -> ActionChildrenTuple *

%% ifIn(MId , ActionChildrenTuple *) -> ActionChildrenTuple *

%% %%%%%%%%%% ProcNames generation

mcrl2PTypesFromProcSpecs(ProcSpec +) -> {ConstrDecl "|"}+

mcrl2PTypesFromProcDecls(ProcDecl +) -> {ConstrDecl "|"}+

variables

"$mid "[0 -9]* -> MId

"$mid +"[0 -9]* -> MId+

"$mid *"[0 -9]* -> MId*

"$mids "[0 -9]* -> MIds

"$fsmSpec "[0 -9]* -> FSMSpecification

"$fsmClass "[0 -9]* -> FSMClass
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"$fsmClass +"[0 -9]* -> FSMClass+

"$fsmClass *"[0 -9]* -> FSMClass*

"$fsmState "[0 -9]* -> FSMStateClause

"$fsmState +"[0 -9]* -> FSMStateClause+

"$fsmWhenClause "[0 -9]* -> FSMWhenClause

"$fsmWhenClause +"[0 -9]* -> FSMWhenClause+

"$fsmWhenClause *"[0 -9]* -> FSMWhenClause*

"$fsmActionClause "[0 -9]* -> FSMActionClause

"$fsmActionClause *"[0 -9]* -> FSMActionClause*

"$fsmExpr "[0 -9]* -> FSMExpression

"$fsmExpr *"[0 -9]* -> FSMExpression*

"$fsmStatement "[0 -9]* -> FSMStatement

"$fsmStatement +"[0 -9]* -> FSMStatement+

"$fsmStatement *"[0 -9]* -> FSMStatement*

"$fsmParameter "[0 -9]* -> FSMParameter

"$fsmReferer "[0 -9]* -> FSMReferer

"$fsmClassName "[0 -9]* -> MId

"$fsmChildrenSpec "[0 -9]* -> FSMChildrenSpec

"$fsmChildrenSpec *"[0 -9]* -> FSMChildrenSpec*

"$fsmStateNameSpec "[0 -9]* -> FSMStateNameSpec

"$fsmStateNameSpecs *"[0 -9]* -> {StateName ","}*

"$fsmChildrenAnySpecific "[0 -9]* -> FSMChildrenAnySpecific

"$fsmChildrenAllSpecific "[0 -9]* -> FSMChildrenAllSpecific

"$fsmChildrenAnyFwChildren "[0 -9]* -> FSMChildrenAnyFwChildren

"$fsmChildrenAllFwChildren "[0 -9]* -> FSMChildrenAllFwChildren

"$fsmActionName "[0 -9]* -> MId %% must be MId for toMcrlCommandName

"$fsmStateName "[0 -9]* -> StateName

"$fsmStateName +"[0 -9]* -> StateName+

"$fsmStateName *"[0 -9]* -> StateName*

"$fsmCurrentState "[0 -9]* -> StateName

"$fsmNewState "[0 -9]* -> StateName

"$fsmStateNames "[0 -9]* -> {StateName ","}+

"$mcrl2CurrentState "[0 -9]* -> MId

"$mcrl2NewState "[0 -9]* -> MId

"$actionClauseTuple "[0 -9]* -> ActionClauseTuple

"$actionClauseTuple +"[0 -9]* -> ActionClauseTuple+

"$actionClauseTuple *"[0 -9]* -> ActionClauseTuple*

"$procDecl "[0 -9]* -> ProcDecl

"$procDecl +"[0 -9]* -> ProcDecl+

"$procDecl *"[0 -9]* -> ProcDecl*

"$dataExpr "[0 -9]* -> DataExpr

"$dataExprs "[0 -9]* -> {DataExpr ","}+

"$procExpr "[0 -9]* -> ProcExpr

"$procSpec "[0 -9]* -> ProcSpec

"$procSpec +"[0 -9]* -> ProcSpec+

"$procSpec *"[0 -9]* -> ProcSpec*

"$mcrl2Command" -> MId

"$mcrlActionCondition" -> DataExpr

"$mcrlActionEffect" -> ProcExpr

"$procName "[0 -9]* -> MId

"$pc "[0 -9]* -> Integer

"$start_pc "[0 -9]* -> Integer

"$avail_pc "[0 -9]* -> Integer

"$jump_pc "[0 -9]* -> Integer

"$then_pc "[0 -9]* -> Integer

"$else_pc "[0 -9]* -> Integer

"$end_pc "[0 -9]* -> Integer

"$idsDecls" -> {IdsDecl ","}+

"$b" -> BoolCon

"$bottomMonitor" -> BoolCon

lexical variables

"# midHead "[0 -9]* -> [a-zA-Z\_]

"# midTailChar "[0 -9]* -> ([a-zA-Z0 -9\_\’])

"# midTail "[0 -9]* -> ([a-zA-Z0 -9\_\’])*

Appendix A.8. cfsm2mcrl2.asf

equations

[cfsm2mcrl2 -1]

cfsm2mcrl2($fsmClass +) = fsmClasses2Mcrl2Procs($fsmClass+, false)

%% Convertor function to convert a FSM class to an MCRL2 specfication , with the added

%% property that the result will be a bottom monitor. That is , it has no children and

%% whenever it would normally check the state of children , it will instead check

%% randomStateChanges .

[cfsm2mcrl2bm -1]

cfsm2mcrl2bm($fsmClass +) = fsmClasses2Mcrl2Procs($fsmClass+, true)
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%% Convert a number of FSM classes into processes .

[convertSpec -single]

fsmClasses2Mcrl2Procs($fsmClass , $b) = fsmClass2Mcrl2Proc($fsmClass , $b)

[convertSpec -multi]

fsmClasses2Mcrl2Procs($fsmClass $fsmClass+, $b) =

fsmClass2Mcrl2Proc($fsmClass , $b) fsmClasses2Mcrl2Procs($fsmClass+, $b)

%% In our main function we define the process instance and process declaration .

[fsmClassName2ProcName -bm]

fsmClassName2ProcName($mid , true) = $mid %% concat($mid , _BM)

[fsmClassName2ProcName -nobm]

fsmClassName2ProcName($mid , false) = $mid

[fsmClass2Mcrl2Proc -1]

$procName := fsmClassName2ProcName($fsmClassName , $b),

$procExpr := convertStates($fsmState+, $procName , $b, collectStates($fsmState+, )),

$procSpec := proc $procName(self: Id , parent: Id , s: State , chs: Children , phase: Phase , aArgs: ActPhaseArgs) =

$procExpr +

insertGenericClauses($procName );

===>

fsmClass2Mcrl2Proc(class: $FWPART_$TOP$ $fsmClassName $fsmState+, $b) = $procSpec

%% Function for converting a list of states. Each state translation translates to a Process Expression , so

%% this means a list should be translated using the alternative ( + ) operator

[convertStates -1-element]

convertStates($fsmState , $procName , $b, $mid*) = convertState($fsmState , $procName , $b, $mid*)

[convertStates -list]

convertStates($fsmState $fsmState+, $procName , $b, $mid*) =

convertState($fsmState , $procName , $b , $mid*) +

convertStates($fsmState+, $procName , $b , $mid*)

%% Functon to convert a single state.

[convertState -nobm]

<$actionClauseTuple*, $pc > := gatherComponentsFromActionClauses($fsmActionClause*, $procName , $fsmCurrentState , 1)

===>

convertState(state: $fsmCurrentState $fsmWhenClause* $fsmActionClause*, $procName , false , $mid*) =

(

% ===========

% BEGIN STATE

% ------------------

% BEGIN WHEN CLAUSES

convertWhenClauses($fsmWhenClause*, $procName , $fsmCurrentState , $actionClauseTuple *) +

% END WHEN CLAUSES

% ----------------

% --------------------

% BEGIN ACTION CLAUSES

% These are the rules:

% pc(aArgs) == 0 => no command received yet

% pc(aArgs) > 0 => command received , executing action clause

% pc(aArgs) == -1 && cq(aArgs) != [] => action clause executed , but still must send commands

% pc(aArgs) == -1 && cq(aArgs) == [] => action clause executed

%% Since the FSM language allows for an arbitrary amount of statements and

%% an arbitrary amount of (nested) if -statements , we cannot simply do a

%% sequential translation . It is for this reason that we use a label to

%% identify the translation of every statement. After executing a

%% statement , a program counter is set to the label of the statement which

%% should be executed next. There are two special cases here:

%% * Label 0, the clause selector. In the action phase , we always first

%% have pc == 0. When we receive a command , the clause selector

%% determines the label of the first statement of the action clause

%% that should handle the command. The program count is then set to

%% this label.

%% * Label -1, end of action. After executing an action , the program

%% counter is set to -1 to signify that we should now empty the

%% sendqueue and move to the when phase.

%% Examples can be found in the translation function of the if - statement .

% BEGIN INITIALIZATION CHECK

(( isStateCheck($fsmCurrentState )) && (isActPhase(phase)) && (!( initialized(chs))) &&

(pc(aArgs) == 0) && (nrf(aArgs) == [])) ->

start_initialization(self).

$procName(self , parent , s, chs , phase ,

actArgs ([], children_to_ids(chs), 0, rsc(aArgs ))) <>

% END INITIALIZATION CHECK
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% BEGIN CLAUSE SELECTOR

(( initialized(chs)) ->

(

((( isStateCheck($fsmCurrentState )) && (isActPhase(phase)) && (cq(aArgs) == []) && (pc(aArgs) == 0)) ->

sum c:Command .(

rc(parent , self , c).

constructClauseSelectors($actionClauseTuple*, $procName)

)) +

% END CLAUSE SELECTOR

combineActionClauseComponents($actionClauseTuple*, $procName , $fsmCurrentState)

))

% END ACTION CLAUSES

% ------------------

% END STATE

% =========

)

%% Functon to convert a single state (bottom monitor variant ).

[convertState -bm]

$dataExpr := inAnyState(collectStates($fsmWhenClause*, )),

$procExpr := createObedientCommandAcceptor($fsmActionClause*, $procName , $mid*)

===>

convertState(state: $fsmCurrentState $fsmWhenClause* $fsmActionClause*, $procName , true , $mid*) =

(

% ===========

% BEGIN STATE

% --------------------

% BEGIN ACTION CLAUSES

(( isStateCheck($fsmCurrentState )) ->

sum c: Command.

(

rc(parent , self , c).

$procExpr

)

)

% END ACTION CLAUSES

% ------------------

% END STATE

% =========

)

%% %%%%%%%%%%%%%%%% When Clauses Stuff

[convertWhenClauses -empty]

$mcrl2CurrentState := toMcrlStateName($fsmCurrentState)

===>

convertWhenClauses(, $procName , $fsmCurrentState , $actionClauseTuple *) =

(

% BEGIN WHEN FALLTHROUGH

((( isStateCheck($fsmCurrentState )) && (isWhenPhase(phase ))) ->

ss(self , parent , s).

move_phase(self , ActionPhase ).

$procName(self , parent , s, chs , ActionPhase , reset(aArgs )))

% END WHEN FALLTHROUGH

)

[convertReferer -moveto]

$mcrl2NewState := toMcrlStateName($fsmNewState)

===>

convertReferer(move_to $fsmNewState , $procName , $mcrl2CurrentState , $actionClauseTuple *) =

move_state(self , $mcrl2NewState ).

$procName(self , parent , $mcrl2NewState , chs , phase , aArgs)

[convertReferer -do]

<$fsmActionName , $start_pc , $mcrlActionCondition , $mcrlActionEffect > :=

getActionClauseTupleForActionName($actionClauseTuple*, $fsmActionName)

===>

convertReferer(do $fsmActionName , $procName , $mcrl2CurrentState , $actionClauseTuple *) =

move_phase(self , ActionPhase ).

$mcrlActionEffect

%% Note: the empty list is not allowed here since there must always be a

%% corresponding action. If not , the FSM is inconsistent .

[getActionClauseTupleForActionName -many -match]

<$fsmActionName , $start_pc , $mcrlActionCondition , $mcrlActionEffect > := $actionClauseTuple

===>

getActionClauseTupleForActionName($actionClauseTuple $actionClauseTuple*, $fsmActionName) =

$actionClauseTuple
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[getActionClauseTupleForActionName -many -nomatch]

<$fsmActionName2 , $start_pc , $mcrlActionCondition , $mcrlActionEffect > := $actionClauseTuple ,

$fsmActionName1 != $fsmActionName2

===>

getActionClauseTupleForActionName($actionClauseTuple $actionClauseTuple*, $fsmActionName1) =

getActionClauseTupleForActionName($actionClauseTuple*, $fsmActionName1)

%% When we have multiple elements in our list of when clauses we translate into

%% a form of ’c -> a.X <> b’ in which ’b’ is the translation of the remaining

%% when clauses

[convertWhenClauses -many]

$mcrl2CurrentState := toMcrlStateName($fsmCurrentState)

===>

convertWhenClauses(when ($fsmExpr) $fsmReferer $fsmWhenClause*, $procName , $fsmCurrentState , $actionClauseTuple *) =

(

% BEGIN WHEN

(( isStateCheck($fsmCurrentState )) && (isWhenPhase(phase )) &&

(convertExpr($fsmExpr ))) ->

convertReferer($fsmReferer , $procName , $mcrl2CurrentState , $actionClauseTuple *) <>

% END WHEN

(convertWhenClauses($fsmWhenClause*, $procName , $fsmCurrentState , $actionClauseTuple *))

)

%% %%%%%%%%%%%%%%%%%%%% Action Clauses Stuff

[gatherComponentsFromActionClauses -empty]

gatherComponentsFromActionClauses(, $procName , $fsmCurrentState , $pc) =

<, $pc >

[gatherComponentsFromActionClauses -many]

$start_pc1 := $avail_pc1 ,

$avail_pc2 := $avail_pc1 + 1,

$mcrl2Command := toMcrlCmdName($fsmActionName),

<$procExpr , $avail_pc3 > := convertStatements($fsmStatement*, $procName , $start_pc1 , -1, $avail_pc2),

<$actionClauseTuple*, $avail_pc4 > :=

gatherComponentsFromActionClauses($fsmActionClause*, $procName , $fsmCurrentState , $avail_pc3)

===>

gatherComponentsFromActionClauses(action: $fsmActionName $fsmStatement* $fsmActionClause*,

$procName , $fsmCurrentState , $avail_pc1) =

<

<

$fsmActionName ,

$start_pc1 ,

(( isStateCheck($fsmCurrentState )) && (isActPhase(phase)) && (cq(aArgs) == [])),

($procExpr)

>

$actionClauseTuple*, $avail_pc4 >

[combineActionClauseComponents -empty]

combineActionClauseComponents(, $procName , $fsmCurrentState) = delta

[combineActionClauseComponents -many]

<$fsmActionName , $start_pc , $mcrlActionCondition , $mcrlActionEffect > := $actionClauseTuple

===>

combineActionClauseComponents($actionClauseTuple $actionClauseTuple*, $procName , $fsmCurrentState) =

(

% BEGIN ACTION

($mcrlActionCondition ->

$mcrlActionEffect) +

% END ACTION

(combineActionClauseComponents($actionClauseTuple*, $procName , $fsmCurrentState )))

[constructClauseSelectors -empty]

constructClauseSelectors(, $procName) =

% BEGIN ACTION FALLTHROUGH

ss(self , parent , s).

ignored_command(self , c).

$procName(self , parent , s, chs , phase , update_pc(aArgs , -1))

% END ACTION FALLTHROUGH

[constructClauseSelectors -many]

constructClauseSelectors(<$fsmActionName , $start_pc , $mcrlActionCondition , $mcrlActionEffect > $actionClauseTuple*,

$procName) =

(isCommandCheck($fsmActionName) -> $procName(self , parent , s, chs , phase , update_pc(aArgs , $start_pc )) <> (

constructClauseSelectors($actionClauseTuple*, $procName )))

[createObedientCommandAcceptor -empty]

createObedientCommandAcceptor(, $procName , $mid*) = constructClauseSelectors(, $procName)
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[createObedientCommandAcceptor -many -nomatch]

contains($fsmActionName , $mid*) == false

===>

createObedientCommandAcceptor(action: $fsmActionName $fsmStatement* $fsmActionClause*, $procName , $mid*) =

createObedientCommandAcceptor($fsmActionClause*, $procName , $mid*)

[createObedientCommandAcceptor -many -match]

contains($fsmActionName , $mid*) == true ,

$mcrl2NewState := toMcrlStateName($fsmActionName),

$mid := toMcrlCmdName($fsmActionName)

===>

createObedientCommandAcceptor(action: $fsmActionName $fsmStatement* $fsmActionClause*, $procName , $mid*) =

((c == $mid) ->

ss(self , parent , $mcrl2NewState ).

move_state(self , $mcrl2NewState ).

$procName(self , parent , $mcrl2NewState , chs , WhenPhase , (reset(aArgs )))

<>

createObedientCommandAcceptor($fsmActionClause*, $procName , $mid *))

%% %%%%%%%%%%%% Statements

[convertStatements -empty]

%% Some FSMs in the bottommost layer might have actions which do not contain any statements .

convertStatements(, $procName , $start_pc , $jump_pc , $avail_pc) =

<

(

% BEGIN STATEMENT NOOP

((pc(aArgs) == $start_pc) ->

noop_statement(self).

($procName(self , parent , s, chs , phase , update_pc(aArgs , $jump_pc ))))

% END STATEMENT NOOP

)

, $avail_pc >

[convertStatements -single]

%% The final statement in a block should jump to the next block ( indicated by $jump_pc ).

convertStatements($fsmStatement , $procName , $start_pc , $jump_pc , $avail_pc) =

convertStatement($fsmStatement , $procName , $start_pc , $jump_pc , $avail_pc)

[convertStatements -multiple]

$start_pc2 := $avail_pc1 ,

$avail_pc2 := $avail_pc1 + 1,

<$procExpr1 , $avail_pc3 > :=

convertStatement($fsmStatement , $procName , $start_pc1 , $start_pc2 , $avail_pc2),

<$procExpr2 , $avail_pc4 > :=

convertStatements($fsmStatement+, $procName , $start_pc2 , $jump_pc , $avail_pc3)

===>

convertStatements($fsmStatement $fsmStatement+, $procName , $start_pc1 , $jump_pc , $avail_pc1) =

<$procExpr1 +

$procExpr2 , $avail_pc4 >

[convertStatement -do]

convertStatement(do $fsmActionName $fsmChildrenSpec , $procName , $start_pc , $jump_pc , $avail_pc) =

<

(

% BEGIN STATEMENT DO

((pc(aArgs) == $start_pc) ->

queue_messages(self).

($procName(self , parent , s, chs , phase ,

actArgs(send_command(toMcrlCmdName($fsmActionName),

convertChildrenSpec($fsmChildrenSpec )),

[], $jump_pc , rsc(aArgs )))))

% END STATEMENT DO

)

, $avail_pc >

[convertStatement -moveto]

$mcrl2NewState := toMcrlStateName($fsmNewState)

===>

convertStatement(move_to $fsmNewState , $procName , $start_pc , $jump_pc , $avail_pc) =

<

(

% BEGIN STATEMENT MOVE_TO

((pc(aArgs) == $start_pc) ->

(ss(self , parent , $mcrl2NewState ).

move_phase(self , WhenPhase ).

$procName(self , parent , $mcrl2NewState , chs , ActionPhase , reset(aArgs ))))

% END STATEMENT MOVE_TO

)

, $avail_pc >

[insertIfBlockingWaiter -1]

insertIfBlockingWaiter($procName , $pc) =

sum s1:State.(

rs(id(head(busy_children(chs))), self , s1).

$procName(self , parent , s,

update_busy(id(head(busy_children(chs))),

false ,

update_state(id(head(busy_children(chs))), s1, chs)),

phase , update_pc(aArgs , $pc)))
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[convertStatement -ifthenend]

$start_pc2 := $avail_pc1 ,

$avail_pc2 := $avail_pc1 + 1,

<$procExpr1 , $avail_pc3 > :=

convertStatements($fsmStatement+, $procName , $start_pc2 , $jump_pc , $avail_pc2),

$procExpr2 :=

(

% BEGIN STATEMENT IF-THEN -ENDIF

((pc(aArgs) == $start_pc1) ->

(

(busy_children(chs) != []) ->

(

insertIfBlockingWaiter($procName , $start_pc1)

)

<>

(

(( convertExpr($fsmExpr )) ->

enter_then_clause(self).

$procName(self , parent , s, chs , phase , update_pc(aArgs , $start_pc2 )) <>

skip_then_clause(self).

$procName(self , parent , s, chs , phase , update_pc(aArgs , $jump_pc )))

)

)) +

(

% BEGIN THEN

$procExpr1

% END THEN

)

% END STATEMENT IF -THEN -ENDIF

)

===>

convertStatement(if ( $fsmExpr ) then $fsmStatement+ endif , $procName , $start_pc1 , $jump_pc , $avail_pc1) =

<

$procExpr2 ,

$avail_pc3

>

[convertStatement -ifthenelseend]

%% Suppose we have the following FSM statements ( pseudocode ):

%%

%% do STANDBY c1

%% if b then

%% do ON c1

%% do ON c2

%% do STANDBY c3

%% else

%% do OFF c1

%% move_to ERROR

%% do OFF c2

%% endif

%% do ON c4

%%

%% We will now give a simplified translation of these statements . For

%% every statement , we give the label of the statement at the beginning

%% of the line , and the label of the next statement at the end of the line ,

%% along with some explanations .

%%

%% We assume that:

%% * start_pc1 = 5

%% * jump_pc = 6

%% * avail_pc = 10

%%

%% The simplified translation follows:

%%

%% 5. queue STANDBY to c1 (-> 10, since 10 is the first available label)

%% 10. IF there is a busy child

%% THEN get the new state of a busy child (-> 10, i.e. loop until there are no busy children)

%% ELSE IF b

%% THEN enter_then_clause (self) (-> 12; note that 11 is reserved for the statement after the if statement )

%% ELSE enter_else_clause (self) (-> 13)

%% 12. queue ON command to c1 (-> 14; note that 13 is taken by the first statement of the else clause)

%% 14. queue ON command to c2 (-> 15)

%% 15. queue STANDBY command to c3 (-> 11; end of this block , so jump to the statement after the if statement)

%% 13. queue OFF command to c1 (-> 16, since 14 -15 are used by the then -block)

%% 16. move to the ERROR state (-> -1; special case: after a move_to we leave the action phase)

%% 17. queue OFF command to c2 (-> 11; unreachable due to the move_to on the previous line)

%% 11. send ON command to c4 (-> 6; last statement in the list , so we jump to jump_pc)

%%

$start_pc2 := $avail_pc1 ,

$start_pc3 := $avail_pc1 + 1,

$avail_pc2 := $avail_pc1 + 2,

<$procExpr1 , $avail_pc3 > :=

convertStatements($fsmStatement +1, $procName , $start_pc2 , $jump_pc , $avail_pc2),

<$procExpr2 , $avail_pc4 > :=

convertStatements($fsmStatement +2, $procName , $start_pc3 , $jump_pc , $avail_pc3),

$procExpr3 :=

(

% BEGIN STATEMENT IF-THEN -ELSE -ENDIF
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((pc(aArgs) == $start_pc1) ->

(

(busy_children(chs) != []) ->

(

insertIfBlockingWaiter($procName , $start_pc1)

)

<>

(

(( convertExpr($fsmExpr )) ->

enter_then_clause(self).

$procName(self , parent , s, chs , phase , update_pc(aArgs , $start_pc2 )) <>

enter_else_clause(self).

$procName(self , parent , s, chs , phase , update_pc(aArgs , $start_pc3 )))

)

)) +

(

% BEGIN THEN

$procExpr1

% END THEN

) +

(

% BEGIN ELSE

$procExpr2

% END ELSE

)

% END STATEMENT IF -THEN -ELSE -ENDIF

)

===>

convertStatement(if ( $fsmExpr ) then $fsmStatement +1 else $fsmStatement +2 endif , $procName , $start_pc1 , $jump_pc , $avail_pc1) =

<

$procExpr3 ,

$avail_pc4

>

%% %%%%%%%%%%% Expressions

%% Conversion of expressions . We have two compound types: and - expressions and

%% or - expressions :

[convertExpr -and]

convertExpr($fsmExpr0 and $fsmExpr1) = convertExpr($fsmExpr0) && convertExpr($fsmExpr1)

[convertExpr -or]

convertExpr($fsmExpr0 or $fsmExpr1) = convertExpr($fsmExpr0) || convertExpr($fsmExpr1)

%% And the expressions which check if certain children are in some specific

%% state. These depend on the specified children (either all children , any

%% child , all children of a certain type , or any child of a certain type ).

%% For the all children/any child we simply use the all_in_state (chs ,stateType )

%% translation .

[convertExpr -allchildren]

convertExpr($fsmChildrenAllFwChildren in_state $fsmStateNameSpec) =

all_in_state(convertChildrenSpec($fsmChildrenAllFwChildren), convertStateNameSpec($fsmStateNameSpec ))

[convertExpr -anychildren]

convertExpr($fsmChildrenAnyFwChildren in_state $fsmStateNameSpec) =

any_in_state(convertChildrenSpec($fsmChildrenAnyFwChildren), convertStateNameSpec($fsmStateNameSpec ))

%% For the translation of ’all children of type T’ we should make sure to use a

%% subset of our children ’chs ’. To do that the convertChildrenSpec function

%% will make sure we apply the ’filter_children ’ method.

[convertExpr -allinstatespecific]

convertExpr($fsmChildrenAllSpecific in_state $fsmStateNameSpec) =

all_in_state(convertChildrenSpec($fsmChildrenAllSpecific), convertStateNameSpec($fsmStateNameSpec ))

[convertExpr -anyinstatespecific]

convertExpr($fsmChildrenAnySpecific in_state $fsmStateNameSpec) =

any_in_state(convertChildrenSpec($fsmChildrenAnySpecific), convertStateNameSpec($fsmStateNameSpec ))

[convertExpr -notallchildren]

convertExpr(not ($fsmChildrenAllFwChildren) in_state $fsmStateNameSpec) =

!( all_in_state(convertChildrenSpec($fsmChildrenAllFwChildren), convertStateNameSpec($fsmStateNameSpec )))

[convertExpr -notallinstatespecific]

convertExpr(not ($fsmChildrenAllSpecific) in_state $fsmStateNameSpec) =

!( all_in_state(convertChildrenSpec($fsmChildrenAllSpecific), convertStateNameSpec($fsmStateNameSpec )))

%% We now repeat these translations for the not_in_state expressions .

[convertExpr -allchildren -not]

convertExpr($fsmChildrenAllFwChildren not_in_state $fsmStateNameSpec) =

!( any_in_state(convertChildrenSpec($fsmChildrenAllFwChildren), convertStateNameSpec($fsmStateNameSpec )))

[convertExpr -anychildren -not]

convertExpr($fsmChildrenAnyFwChildren not_in_state $fsmStateNameSpec) =

!( all_in_state(convertChildrenSpec($fsmChildrenAnyFwChildren), convertStateNameSpec($fsmStateNameSpec )))

[convertExpr -allinstatespecific -not]

convertExpr($fsmChildrenAllSpecific not_in_state $fsmStateNameSpec) =

!( any_in_state(convertChildrenSpec($fsmChildrenAllSpecific), convertStateNameSpec($fsmStateNameSpec )))

[convertExpr -anyinstatespecific -not]

convertExpr($fsmChildrenAnySpecific not_in_state $fsmStateNameSpec) =

!( all_in_state(convertChildrenSpec($fsmChildrenAnySpecific), convertStateNameSpec($fsmStateNameSpec )))
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%% Expressions can have brackets , simply leave them as they are and translate

%% the epxression inside them.

[convertExpr -bracket]

convertExpr (( $fsmExpr )) = (convertExpr($fsmExpr ))

%% Apply the filter on the childrenlist .

[convertChildrenSpec -alltype]

convertChildrenSpec($ALL$ $fsmClassName) = filter_children(chs , concat($fsmClassName , _CLASS ))

[convertChildrenSpec -anytype]

convertChildrenSpec($ANY$ $fsmClassName) = filter_children(chs , concat($fsmClassName , _CLASS ))

[convertChildren -all]

convertChildrenSpec($fsmChildrenAllFwChildren) = chs

[convertChildren -any]

convertChildrenSpec($fsmChildrenAnyFwChildren) = chs

%% Conversion of the StateNameSpec in the FSMs into a list of states. A

%% stateNameSpec is either a simple state name:

[convertStateNameSpec -single]

convertStateNameSpec($fsmStateName) = [toMcrlStateName($fsmStateName )]

%% Or a set of state names in the form "{ name1 , name2 , ... }". We can then

%% distinguish two cases: We have exactly one statename or multiple statenames

[convertStateNameSpec -single -in -multiple]

convertStateNameSpec ({ $fsmStateName }) = [toMcrlStateName($fsmStateName )]

[convertStateNameSpec -multiple]

[ $dataExprs ] := convertStateNameSpec ({ $fsmStateNames })

===>

convertStateNameSpec ({ $fsmStateName , $fsmStateNames }) =

[toMcrlStateName($fsmStateName), $dataExprs]

[inAnyState -empty]

inAnyState () = false

[inAnyState -one]

inAnyState($mid) = isStateCheck($mid , s1)

[inAnyState -many]

inAnyState($mid $mid+) = isStateCheck($mid , s1) || inAnyState($mid+)

%% %%%%%% Lexical Stuff %%%%%%%%%%%

%% Create a check if the currentState is state id , i.e. convert

%% idStateCheck (myState) into: isMyState (s).

[isStateCheck -2]

mid(# midHead #midTail) := toMcrlIsFunction(toMcrlStateName($mid1))

===>

isStateCheck($mid1 , $mid2) = mid(# midHead #midTail )($mid2)

[isStateCheck -1]

isStateCheck($mid) = isStateCheck($mid , s)

%% Same for command checks.

[isCommand -c]

mid(# midHead #midTail) := toMcrlIsFunction(toMcrlCmdName($mid))

===>

isCommandCheck($mid) = mid(# midHead #midTail )(c)

%% Function to prepend the is to the function name.

[toMcrlIsFunc]

toMcrlIsFunction(mid(# midHead #midTail )) = mid(is #midHead #midTail)

[toMcrlState -1]

toMcrlStateName(mid(# midHead #midTail )) = concat(S_ , mid(# midHead #midTail ))

[toMcrlCmd -1]

toMcrlCmdName(mid(# midHead #midTail )) = concat(C_, mid(# midHead #midTail ))

%% %%%%%% Create Sort declaration stuff

%% We generate the sort declarations for the Process Type , State and Command.

%% All these sorts are structs. So for each one collect all names of Classes

%% (= Process Types )/ States/Actions and create the struct declarations from

%% these names

[generateSorts]

fsmGenerateSorts($fsmClass +) =

PType = struct convertClassNamesToTypeConstrDecl(collectClasses($fsmClass +,));

State = struct S_FSM_UNINITIALIZED ? isS_FSM_UNINITIALIZED |

convertStateNamesToStateConstrDecl(collectStates($fsmClass +,));

Command = struct convertActionNamesToCmdConstrDecl(collectCommands($fsmClass +,));

%% Convert the state names from the form ’statename ’ into ’S_statename ? isS_statename ’

[convertStateNamesToSortDecl -single]

convertStateNamesToStateConstrDecl($mid) =

toMcrlStateName($mid) ? toMcrlIsFunction(toMcrlStateName($mid))

[convertStateNamesToSortDecl -multi]

convertStateNamesToStateConstrDecl($mid $mid+) =

convertStateNamesToStateConstrDecl($mid) | convertStateNamesToStateConstrDecl($mid+)

%% convert actions/commands from ’commandname ’ into ’C_commandname ? isC_commandname ’

[convertActionNamesToSortDecl -single]
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convertActionNamesToCmdConstrDecl($mid) =

toMcrlCmdName($mid) ? toMcrlIsFunction(toMcrlCmdName($mid))

[convertActionNamesToSortDecl -multi]

convertActionNamesToCmdConstrDecl($mid $mid+) =

convertActionNamesToCmdConstrDecl($mid) | convertActionNamesToCmdConstrDecl($mid+)

%% convert the class names from ’classname ’ into ’classname ? isclassname ’

[convertClassNamesToSortDecl -single]

convertClassNamesToTypeConstrDecl($mid) = $mid ? toMcrlIsFunction($mid)

[convertClassNamesToTypeSortDecl -multi]

convertClassNamesToTypeConstrDecl($mid $mid+) =

convertClassNamesToTypeConstrDecl($mid) | convertClassNamesToTypeConstrDecl($mid+)

%% Traversal functions to collect the classnames , action -names and statenames .

[collect -class -definition]

collectClasses(class: $FWPART_$TOP$ $fsmClassName $fsmState+, $mid*) = addToSet($fsmClassName , $mid*)

[collect -class -exprall]

collectClasses($ALL$$fsmClassName , $mid*) = addToSet(concat($fsmClassName , _CLASS), $mid*)

[collect -class -exprany]

collectClasses($ANY$$fsmClassName , $mid*) = addToSet(concat($fsmClassName , _CLASS), $mid*)

[collect -command]

collectCommands(action: $fsmActionName $fsmStatement+, $mid*) = addToSet($fsmActionName , $mid*)

[collect -state]

collectStates(state: $fsmStateName $fsmWhenClause+ $fsmActionClause*, $mid*) = addToSet($fsmStateName , $mid*)

[collect -state -when]

collectStates(when ( $fsmExpr ) move_to $fsmStateName , $mid*) = addToSet($fsmStateName , $mid*)

[collect -state -statenamespec]

$mid*1 := collectStates ({ $fsmStateNameSpecs* }, $mid*)

===>

collectStates( { $fsmStateName , $fsmStateNameSpecs *}, $mid*) = addToSet($fsmStateName , $mid *1)

[collect -state -statenamespec -1-element]

collectStates( $fsmStateName , $mid*) = addToSet($fsmStateName , $mid*)

%% %%%%%% Constructing a PType for an mcrl2 specification .

[mcrl2GetPTypes -1]

mcrl2GetPTypes($procSpec +) =

PType = struct mcrl2PTypesFromProcSpecs($procSpec +);

[mcrl2PTypesFromProcSpecs -one]

mcrl2PTypesFromProcSpecs(proc $procDecl +) =

mcrl2PTypesFromProcDecls($procDecl +)

[mcrl2PTypesFromProcSpecs -many]

mcrl2PTypesFromProcSpecs(proc $procDecl+ $procSpec +) =

mcrl2PTypesFromProcDecls($procDecl +) | mcrl2PTypesFromProcSpecs($procSpec +)

[mcrl2PTypesFromProcDecls -one -1]

mcrl2PTypesFromProcDecls($mid = $procExpr ;) =

convertClassNamesToTypeConstrDecl($mid)

[mcrl2PTypesFromProcDecls -many -1]

mcrl2PTypesFromProcDecls($mid = $procExpr; $procDecl +) =

convertClassNamesToTypeConstrDecl($mid) | mcrl2PTypesFromProcDecls($procDecl +)

[mcrl2PTypesFromProcDecls -one -2]

mcrl2PTypesFromProcDecls($mid ( $idsDecls ) = $procExpr ;) =

convertClassNamesToTypeConstrDecl($mid)

[mcrl2PTypesFromProcDecls -many -2]

mcrl2PTypesFromProcDecls($mid ( $idsDecls ) = $procExpr; $procDecl +) =

convertClassNamesToTypeConstrDecl($mid) | mcrl2PTypesFromProcDecls($procDecl +)

[addToSet -empty]

addToSet($mid ,) = $mid

[addToSet -multisame]

addToSet($mid ,$mid $mid*) = $mid $mid*

[addToSet -multidiff]

$mid != $mid1

===>

addToSet($mid ,$mid1 $mid*) = $mid1 addToSet($mid , $mid*)

Appendix B. mCRL2 files

%% This file implements the three -valued logic that is used in the

%% interpretation of when clauses. It is based on the description by Boda Franek

%% titled " Condition processing ", dated May 2011.

sort ThreeValuedLogic = struct TRUE | FALSE | GHOST;
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map % Standard logic operators , extended to three values

or, and: ThreeValuedLogic # ThreeValuedLogic -> ThreeValuedLogic;

not: ThreeValuedLogic -> ThreeValuedLogic;

% Convert a three valued logic value to Boolean

bool: ThreeValuedLogic -> Bool;

% Convert a Boolean to a three valued logic value

threeval: Bool -> ThreeValuedLogic;

var x: ThreeValuedLogic;

eqn (x != GHOST) -> or(x, GHOST) = x;

(x != GHOST) -> or(GHOST , x) = x;

(x != GHOST) -> or(TRUE , x) = TRUE;

(x != GHOST) -> or(x, TRUE) = TRUE;

(x != GHOST) -> or(FALSE , x) = x;

(x != GHOST) -> or(x, FALSE) = x;

or(x, x) = x;

(x != GHOST) -> and(x, GHOST) = x;

(x != GHOST) -> and(GHOST , x) = x;

(x != GHOST) -> and(TRUE , x) = x;

(x != GHOST) -> and(x, TRUE) = x;

(x != GHOST) -> and(FALSE , x) = FALSE;

(x != GHOST) -> and(x, FALSE) = FALSE;

and(x, x) = x;

not(GHOST) = GHOST;

not(TRUE) = FALSE;

not(FALSE) = TRUE;

bool(TRUE) = true;

bool(FALSE) = false;

bool(GHOST) = false;

threeval(true) = TRUE;

threeval(false) = FALSE;

map % Check whether a child is in any of the states in a list.

in_any_of_states: Child # (Child -> State) # List(State) -> ThreeValuedLogic;

% Check whether a child is not in any of the states in a list.

not_in_any_of_states: Child # (Child -> State) # List(State) -> ThreeValuedLogic;

% Check whether all children are in any of the states in a list.

all_in_state: Children # (Child -> State) # List(State) -> ThreeValuedLogic;

% Check whether any of the children is in any of the states in a list.

any_in_state: Children # (Child -> State) # List(State) -> ThreeValuedLogic;

% Check whether all children are not in any of the states in a list.

all_not_in_state: Children # (Child -> State) # List(State) -> ThreeValuedLogic;

% Check whether any of the children in not in any of the states in a list.

any_not_in_state: Children # (Child -> State) # List(State) -> ThreeValuedLogic;

var ch: Child;

chs: Children;

s: State;

sl: List(State);

cs: Child -> State;

eqn in_any_of_states(ch ,cs, []) = FALSE;

in_any_of_states(ch,cs, s|>sl) = or(threeval(cs(ch) == s),

in_any_of_states(ch, cs , sl));

all_in_state ([], cs , sl) = GHOST;

all_in_state(ch |> chs , cs , sl) = and(in_any_of_states(ch, cs , sl),

all_in_state(chs , cs , sl));

any_in_state ([], cs , sl) = GHOST;

any_in_state(ch |> chs , cs , sl) = or(in_any_of_states(ch, cs, sl),

any_in_state(chs , cs , sl));

all_not_in_state ([], cs , sl) = GHOST;

all_not_in_state(ch |> chs , cs , sl) = and(not(in_any_of_states(ch, cs, sl)),

all_not_in_state(chs , cs , sl));

any_not_in_state ([], cs , sl) = GHOST;

any_not_in_state(ch |> chs , cs , sl) = or(not(in_any_of_states(ch, cs, sl)),

any_not_in_state(chs , cs , sl));
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