Algorithms and optimisations for parity games applied to Boolean Equation Systems

Jeroen Keiren
j.j.a.keiren@student.tue.nl

6th July 2009
Outline

Introduction

Algorithms & Optimisations

Experiments

Conclusions
Introduction

Complexity of software and hardware increases

- Requires techniques for verifying correctness:
 - Testing (not exhaustive)
 - Formal proof techniques (require human intellect)
 - Model checking (automated, but time-consuming)

Model checking:

- Property (logic formula)
- Model
- Does model satisfy property?

Figure: Roertunnel (ANP)
Methodology

\[\mu \text{-calculus formula} \rightarrow \text{LPE} \rightarrow \text{PBES} \rightarrow \text{Parity game} \rightarrow \text{BES} \rightarrow \text{Solve} \]
Definition
A BES is a system of fixpoint equations of the form $\sigma X = f$, with $\sigma \in \{\mu, \nu\}$ a fixpoint symbol, and f a logic formula.

Intuition: solution satisfies equations (multiple solutions), fixpoints indicate chosen solution; equations higher in the system take priority over lower ones

Definition
A parity game is a graph game played by two players, $Even$ and Odd. Every vertex v has integer priority $p(v)$. Player $Even$ wins infinite play if least priority that occurs infinitely often is even.

BESs and parity games are equivalent
Algorithms & Optimisations

Practice shows BES algorithms not efficient, except for restricted BES forms

What algorithm should we implement to speed up solving of BESs?

<table>
<thead>
<tr>
<th>Parity game algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small progress measures (2000)</td>
</tr>
<tr>
<td>Strategy improvement (2000)</td>
</tr>
<tr>
<td>Optimal strategy improvement (2008)</td>
</tr>
<tr>
<td>Bigstep (2007)</td>
</tr>
<tr>
<td>Model checker (1998)</td>
</tr>
<tr>
<td>Recursive (1993)</td>
</tr>
<tr>
<td>Recursive with preservation (2008)</td>
</tr>
<tr>
<td>Dominion decomposition (2006)</td>
</tr>
<tr>
<td>3 satisfiability encodings</td>
</tr>
</tbody>
</table>

- Complexity depends on number of edges, vertices, priorities
- Optimisation techniques known that can be applied to all algorithms
 - Remove edges
 - Decrease priorities
 - Solve special cases (with more efficient algorithms)
 - SCC decomposition
Priority propagation

- Most optimisations described in both worlds
- Priority propagation new for BES

Intuition: Play that visits vertex v infinitely often must visit one of v’s successors infinitely often; reduce v’s priority to largest priority of v’s successors. (Same can be done for predecessors)

Example
Priority propagation

- Most optimisations described in both worlds
- Priority propagation new for BES

Intuition: Play that visits vertex v infinitely often must visit one of v’s successors infinitely often; reduce v’s priority to largest priority of v’s successors. (Same can be done for predecessors)

Example
Priority propagation (2)

Concept translates to BES:

Theorem

Let $\mathcal{E}_0, \mathcal{E}_1, \mathcal{E}_2$ be BESs, then solution of $\mathcal{E}_0\mathcal{E}_1(\sigma X = f)\mathcal{E}_2 = \mathcal{E}_0(\sigma' X = f)\mathcal{E}_1\mathcal{E}_2$, provided that $\text{occ}(f) \cap \text{bnd}(\mathcal{E}_1\mathcal{E}_2) = \emptyset$ and $X \in \text{occ}(f) \Rightarrow \sigma = \sigma'$

- Theorem inspired upon priority propagation
- Also holds if $X \notin \text{occ}(\mathcal{E}_1) \cup \text{occ}(\mathcal{E}_2)$ and $X \in \text{occ}(f) \Rightarrow \sigma = \sigma'$
- Proofs in semantics of BES, with induction to length of \mathcal{E}_1
Experiments

> 20,000 runs, about three months CPU time

- What is the effect of optimisations?
 - 1 model, 4 properties, 2^7 combinations of optimisations

- How do algorithms depend on priorities?
 - 1 model, 4 properties, 2^6 combinations of optimisations, artificially increase number of priorities

- What is the most efficient algorithm?
 - Large number of models, properties inducing varying number of priorities (between 1 and 3), optimisations enabled

All experiments done for 11 algorithms
What is the effect of optimisations? (1)

- SCC decomposition dramatically speeds up computation
What is the effect of optimisations? (2)

SCC decomposition is not the holy grail
What is the effect of optimisations? (3)

- SCC decomposition is beneficial
- Solving special games helps, but not a lot
- No other significant improvements observed with other known optimisations
- Can we do better?
Oblivious bisimulation

Yes we can!

Strong bisimulation minimisation:

- Similar to well-known bisimulation minimisation of state spaces
- Equations related that have same rank and Boolean operand, and
 transfer conditions hold

Observation:

- Equations $\sigma X = Y$ and $\sigma X' = Y \land Y$ not related

Oblivious bisimulation minimisation:

- Similar to strong bisimulation minimisation, but restriction on
 Boolean operands dropped if all variables in right hand sides related
- $\sigma X = Y$ and $\sigma X' = Y \land Y$ related

Strong bisimulation generalised to arbitrary BESs by Reniers and Willemse
What is the most efficient algorithm? (1)

Case: SWP$_2$, infinitely often receive all d

| $|M|$ | 2 | 3 | 4 |
|------|--------------|--------------|--------------|
| size | 157,165 | 872,008 | 3,097,875 |
| Viasat | 0.80 | 4.83 | 19.04 |
| Strategy improvement SAT | 0.79 | 4.83 | 19.13 |
| Small progress measures SAT | 0.80 | 4.83 | 19.01 |
| Small progress measures | 1.31 | 9.58 | 31.21 |
| Strategy improvement | 0.80 | 4.98 | 18.87 |
| Optimal strategy improvement | 0.81 | 4.88 | 19.13 |
| Recursive | 0.81 | 4.83 | 18.97 |
| Recursive w. preservation | 0.81 | 4.72 | 19.09 |
| Dominion decomposition | 0.81 | 5.01 | 18.98 |
| Bigstep | 0.81 | 4.90 | 19.96 |
| Model checker | 0.81 | 4.83 | 19.01 |
Accumulated performance indicators:

<table>
<thead>
<tr>
<th>Strategy</th>
<th># top 10%</th>
<th># worst 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viasat</td>
<td>278</td>
<td>216</td>
</tr>
<tr>
<td>Strategy improvement SAT</td>
<td>285</td>
<td>216</td>
</tr>
<tr>
<td>Small progress measures SAT</td>
<td>282</td>
<td>215</td>
</tr>
<tr>
<td>Small progress measures</td>
<td>198</td>
<td>296</td>
</tr>
<tr>
<td>Strategy improvement</td>
<td>286</td>
<td>214</td>
</tr>
<tr>
<td>Optimal strategy improvement</td>
<td>283</td>
<td>218</td>
</tr>
<tr>
<td>Recursive</td>
<td>292</td>
<td>212</td>
</tr>
<tr>
<td>Recursive w. preservation</td>
<td>285</td>
<td>219</td>
</tr>
<tr>
<td>Dominion decomposition</td>
<td>291</td>
<td>215</td>
</tr>
<tr>
<td>Bigstep</td>
<td>277</td>
<td>220</td>
</tr>
<tr>
<td>Model checker</td>
<td>286</td>
<td>215</td>
</tr>
</tbody>
</table>
What is the most efficient algorithm? (2)

- Small progress measures stands out negatively
- Only small differences between other algorithms
- Differences small because of optimisations
- Desire: algorithms that hardly show extremely bad performance
- Advice: choose bigstep and recursive algorithms
Conclusions

What algorithms should we implement?

- SCC decomposition and detecting and solving special cases
- Bigstep and recursive algorithms
- Oblivious bisimulation minimisation beats solvers and optimisations

Future work:

- Investigate further reductions for BESs (e.g. stuttering equivalence)
- Investigate effectiveness of generalised parity game algorithms in BES framework
- Develop reduction techniques in symbolic framework of PBES