
Generic programming in the mCRL2 tool set

Wieger Wesselink, Jeroen van der Wulp and Jeroen Keiren

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{j.w.wesselink, j.j.a.keiren}@tue.nl, jeroen.vanderwulp@gmail.com

1 Introduction

The mCRL2 tool set [GKM+08] is a tool set for verification and validation
of concurrent processes, based on process algebra specifications. The mCRL2
language is based on the Algebra of Communicating Processes (ACP), which
is extended to include data and time. This paper reports on experiences with
generic programming in C++ as applied in the implementation of the tool set.
C++ concepts, a type system for templates [RS06], form a key ingredient of this
style of programming. Using concept definitions, requirements on template types
can be defined that are type checked during compile time. The main benefits for
the mCRL2 tool set are uniform and flexible interfaces that operate on well-
defined types, and a significant increase in code reuse. The use of concepts also
promotes the writing of code that corresponds closely to pseudo code, since the
chosen concepts correspond naturally with domain specific concepts. This will
be illustrated by a simple use case, namely substitution functions.

Generic programming is about generalizing software components, to enable
reuse in a wide variety of situations. In C++, generic programming is enabled
using templates. C++ concepts are proposed as a means to type check template
types. A concept is a set of requirements (valid expressions, associated types,
semantic invariants, complexity guarantees, and so on) that a type must fulfill
to be correctly used as an argument in a call to a generic algorithm, see [RS06].
Language support for concepts has been proposed [GJS+06] for the next version
of the C++ standard, C++0x. Concepts will be used to make the specification
of the C++ standard library more complete and precise. A derivative of the
GNU C++ compiler [Gre08] already implements language support for concepts.
In the mCRL2 tool set we have used a portable library for concept checking.

Most uses of generic programming in general, and more specifically the use
of concepts, that are described in the literature treat the construction of data
structures and algorithms that operate on these, see e.g. [GL05].

2 The mCRL2 tool set

The mCRL2 tool set stores data structures like state spaces and parameterized
boolean equation systems using terms. A frequent operation in algorithms on



2

these data structures is substitution on terms. A substitution concept has been
defined, and applied throughout the tool set, together with a traversal framework
for data structures. This has made quite a number of existing replace functions
on terms obsolete, and many more ad hoc solutions for less general substitution
problems as well. The introduction of the substitution concept has also opened
the way to easily experiment with different implementations of substitution func-
tions, instead of with a fixed number of predefined ones. C++ concepts have been
applied at several other places. We have, for example, defined a rewriter concept
that has helped to make the term rewriter fully replaceable.

3 Example

By means of example we take the substitution concept that has been defined in
the tool set. A substitution is a function that maps variables from a domain V to
terms of a range T. Let x be a variable, t a term, and σ : V→ T a substitution
that models a Substitution concept, that has the following requirements:

– Substitution::variable type is a valid C++ type
– Substitution::term type is a valid C++ type
– σ(x) is a valid expression of type Substitution::term type
– σ[x] = t is a valid C++ expression

The first three requirements correspond to the ordinary mathematical func-
tion concept. We have used the domain specific names variable type and
term type instead of the usual names argument type and result type. The
third requirement defines the syntax for function application and expresses that
the function call operator must be overloaded. The last requirement applies to
mutable substitutions, and defines the syntax for updating a substitution. The
semantics of the statement σ[x] = t is that σ := σ[x→ t], where σ[x→ t](y) = t
if y = x and σ[x→ t](y) = σ(y) otherwise.

An algorithm that takes an argument σ that models the Substitution con-
cept, can only rely on the four requirements that are given here. Using a tech-
nique called concept checking one can detect at compile time if an argument
type satisfies all these requirements. Moreover, one can easily test if an algo-
rithm does not inadvertently use other properties of a type. As an example we
consider the implementation of a function f that applies the substitution x := t
to a process p:

void f(process &p, variable x, term t) {

substitution sigma; // use a predefined map based substitution class

sigma[x] = t; // add the substitution x -> t to sigma

substitute(p, sigma); // apply sigma globally to terms in p

}

Here substitute is a generic function with the following interface:

template <typename Object, typename Substitution>

void rewrite(Object& o, Substitution sigma);



3

It applies σ to an object o that may be one of the mCRL2 data structures
containing terms. Overloads have been added for C++ standard containers and
mCRL2 specific containers containing elements of these data structures. To im-
plement the substitute function a reusable traversal framework for hierarchical
mCRL2 data structures has been defined.

4 Discussion

The substitution concept that was discussed in the previous section may look
deceptively simple. Applying this concept globally however has lead to a remark-
able cleanup of the code. At many places interfaces have become simpler and
at the same time more generic. Virtually all of the more complicated and less
generic solutions for substitutions could be removed. An interesting and chal-
lenging application was the definition of a term rewriter concept. Applying this
concept globally took a significant effort, caused by problems in the existing in-
terface. The result of this operation is that many algorithms in the mCRL2 tool
set that require a rewriter for their computations have been parameterized with
a Rewriter template argument. This has significant advantages. First of all it
opens the possibility to experiment with different implementations of a rewriter
without having to modify the code of these algorithms. This is useful for instance
for doing benchmarks. Another advantage of using concepts in the interfaces of
algorithms is the explicit documentation of type requirements. Having clear se-
mantics of types is a necessary step towards making correct implementations.
Finally, the usage of concepts promotes the writing of clean code that corre-
sponds almost one to one to pseudo code descriptions of algorithms. For many
algorithms in the mCRL2 tool set descriptions in pseudo code are available.

Concluding we can say that the application of generic programming tech-
niques in the mCRL2 tool set attributes to increased productivity through uni-
form and flexible interfaces, and to decreased maintenance costs through an
increased level of reuse of code written at a higher level of abstraction.

References

[GJS+06] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine.
Concepts: Linguistic support for generic programming in C++. In Proc.
OOPSLA’06, pages 291–310. ACM Press, October 2006.

[GKM+08] J.F. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink,
Y. Usenko, M. van Weerdenburg, W. Wesselink, T. Willemse, and J. van der
Wulp. The mCRL2 toolset. In Proc. WASDeTT’08), 2008.

[GL05] R. Garcia and A. Lumsdaine. MultiArray: a C++ library for generic pro-
gramming with arrays. Softw., Pract. Exper., 35(2):159–188, 2005.

[Gre08] D. Gregor. ConceptGCC — a prototype compiler for cpp con-
cepts. http://www.generic-programming.org/software/ConceptGCC/,
January 2008.

[RS06] G. Dos Reis and B. Stroustrup. Specifying c++ concepts. In Proc.
POPL’06, pages 295–308, New York, NY, USA, 2006. ACM.


